8000 GitHub - Layla616/10_Python_Pandas_Module: Pandas is a high-level data manipulation tool developed by Wes McKinney. It is built on the Numpy package and its key data structure is called the DataFrame. DataFrames allow you to store and manipulate tabular data in rows of observations and columns of variables.
[go: up one dir, main page]

Skip to content

Pandas is a high-level data manipulation tool developed by Wes McKinney. It is built on the Numpy package and its key data structure is called the DataFrame. DataFrames allow you to store and manipulate tabular data in rows of observations and columns of variables.

License

Notifications You must be signed in to change notification settings

Layla616/10_Python_Pandas_Module

Β 
Β 

Repository files navigation

Last Commit Created Last Commit Stars Badge Forks Badge Size Pull Requests Badge Issues Badge Language MIT License

binder colab

10_Python_Pandas_Module

Introduction πŸ‘‹

What is Pandas in Python?

Pandas is the most famous python library providing fast, flexible, and expressive data structures designed to make working with "relational" or "labeled" data both easy and intuitive. It aims to be the fundamental high-level building block for doing practical, real world data analysis in Python. Additionally, it has the broader goal of becoming the most powerful and flexible open source data analysis / manipulation tool available in any language. It is already well on its way towards this goal.

In Pandas, the data is usually utilized to support the statistical analysis in SciPy, plotting functions from Matplotlib, and machine learning algorithms in Scikit-learn.

Main Features

Here are just a few of the things that pandas does well:

  • Easy handling of missing data (represented as NaN) in floating point as well as non-floating point data
  • Size mutability: columns can be inserted and deleted from DataFrame and higher dimensional objects
  • Automatic and explicit data alignment: objects can be explicitly aligned to a set of labels, or the user can simply ignore the labels and let Series, DataFrame, etc. automatically align the data for you in computations
  • Powerful, flexible group by functionality to perform split-apply-combine operations on data sets, for both aggregating and transforming data
  • Make it easy to convert ragged, differently-indexed data in other Python and NumPy data structures into DataFrame objects
  • Intelligent label-based slicing, fancy indexing, and subsetting of large data sets
  • Intuitive merging and joining datasets
  • Flexible reshaping and pivoting of datasets
  • Hierarchical labeling of axes (possible to have multiple labels per tick)
  • Robust IO tools for loading data from flat files (CSV and delimited), Excel files, databases, and saving/loading data from the ultrafast HDF5 format
  • Time series-specific functionality: date range generation and frequency conversion, moving window statistics, moving window linear regressions, date shifting and lagging, etc.

Core Components of Pandas Data Structure

Pandas have two core data structure components, and all operations are based on those two objects. Organizing data in a particular way is known as a data structure. Here are the two pandas data structures:

About

Pandas is a high-level data manipulation tool developed by Wes McKinney. It is built on the Numpy package and its key data structure is called the DataFrame. DataFrames allow you to store and manipulate tabular data in rows of observations and columns of variables.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%
0