8000 BigQuery Storage API sample for reading pandas dataframe by tswast · Pull Request #1994 · GoogleCloudPlatform/python-docs-samples · GitHub
[go: up one dir, main page]

Skip to content

BigQuery Storage API sample for reading pandas dataframe #1994

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 10 commits into from
Feb 7, 2019
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Empty file.
190 changes: 190 additions & 0 deletions bigquery_storage/to_dataframe/main_test.py
< 8000 tr data-hunk="92431c620269301bdbb76f9b06afd1aed6795261a07f11fd36671bb66167688c" class="show-top-border">
Original file line number Diff line number Diff line change
@@ -0,0 +1,190 @@
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import uuid

import pytest


@pytest.fixture
def clients():
# [START bigquerystorage_pandas_tutorial_all]
# [START bigquerystorage_pandas_tutorial_create_client]
import google.auth
from google.cloud import bigquery
from google.cloud import bigquery_storage_v1beta1

# Explicitly create a credentials object. This allows you to use the same
# credentials for both the BigQuery and BigQuery Storage clients, avoiding
# unnecessary API calls to fetch duplicate authentication tokens.
credentials, your_project_id = google.auth.default(
scopes=["https://www.googleapis.com/auth/cloud-platform"]
)

# Make clients.
bqclient = bigquery.Client(
credentials=credentials,
project=your_project_id
)
bqstorageclient = bigquery_storage_v1beta1.BigQueryStorageClient(
credentials=credentials
)
# [END bigquerystorage_pandas_tutorial_create_client]
# [END bigquerystorage_pandas_tutorial_all]
return bqclient, bqstorageclient


def test_table_to_dataframe(capsys, clients):
from google.cloud import bigquery

bqclient, bqstorageclient = clients

# [START bigquerystorage_pandas_tutorial_all]
# [START bigquerystorage_pandas_tutorial_read_table]
# Download a table.
table = bigquery.TableReference.from_string(
"bigquery-public-data.utility_us.country_code_iso"
)
rows = bqclient.list_rows(
table,
selected_fields=[
bigquery.SchemaField("country_name", "STRING"),
bigquery.SchemaField("fips_code", "STRING"),
],
)
dataframe = rows.to_dataframe(bqstorage_client=bqstorageclient)
print(dataframe.head())
# [END bigquerystorage_pandas_tutorial_read_table]
# [END bigquerystorage_pandas_tutorial_all]

out, _ = capsys.readouterr()
assert "country_name" in out


@pytest.fixture
def temporary_dataset(clients):
from google.cloud import bigquery

bqclient, _ = clients

# [START bigquerystorage_pandas_tutorial_all]
# [START bigquerystorage_pandas_tutorial_create_dataset]
# Set the dataset_id to the dataset used to store temporary results.
dataset_id = "query_results_dataset"
# [END bigquerystorage_pandas_tutorial_create_dataset]
# [END bigquerystorage_pandas_tutorial_all]

dataset_id = "bqstorage_to_dataset_{}".format(uuid.uuid4().hex)

# [START bigquerystorage_pandas_tutorial_all]
# [START bigquerystorage_pandas_tutorial_create_dataset]
dataset_ref = bqclient.dataset(dataset_id)
dataset = bigquery.Dataset(dataset_ref)

# Remove tables after 24 hours.
dataset.default_table_expiration_ms = 1000 * 60 * 60 * 24

bqclient.create_dataset(dataset) # API request.
# [END bigquerystorage_pandas_tutorial_create_dataset]
# [END bigquerystorage_pandas_tutorial_all]
yield dataset_ref
# [START bigquerystorage_pandas_tutorial_cleanup]
bqclient.delete_dataset(dataset_ref, delete_contents=True)
# [END bigquerystorage_pandas_tutorial_cleanup]


def test_query_to_dataframe(capsys, clients, temporary_dataset):
from google.cloud import bigquery

bqclient, bqstorageclient = clients
dataset_ref = temporary_dataset

# [START bigquerystorage_pandas_tutorial_all]
# [START bigquerystorage_pandas_tutorial_read_query_results]
import uuid

# Download query results.
query_string = """
SELECT
CONCAT(
'https://stackoverflow.com/questions/',
8000 CAST(id as STRING)) as url,
view_count
FROM `bigquery-public-data.stackoverflow.posts_questions`
WHERE tags like '%google-bigquery%'
ORDER BY view_count DESC
"""
# Use a random table name to avoid overwriting existing tables.
table_id = "queryresults_" + uuid.uuid4().hex
table = dataset_ref.table(table_id)
query_config = bigquery.QueryJobConfig(
# Due to a known issue in the BigQuery Storage API, small query result
# sets cannot be downloaded. To workaround this issue, write results to
# a destination table.
destination=table
)

dataframe = (
bqclient.query(query_string, job_config=query_config)
.result()
.to_dataframe(bqstorage_client=bqstorageclient)
)
print(dataframe.head())
# [END bigquerystorage_pandas_tutorial_read_query_results]
# [END bigquerystorage_pandas_tutorial_all]

out, _ = capsys.readouterr()
assert "stackoverflow" in out


def test_session_to_dataframe(capsys, clients):
from google.cloud import bigquery_storage_v1beta1

bqclient, bqstorageclient = clients
your_project_id = bqclient.project

# [START bigquerystorage_pandas_tutorial_all]
# [START bigquerystorage_pandas_tutorial_read_session]
table = bigquery_storage_v1beta1.types.TableReference()
table.project_id = "bigquery-public-data"
table.dataset_id = "new_york_trees"
table.table_id = "tree_species"

# Select columns to read with read options. If no read options are
# specified, the whole table is read.
read_options = bigquery_storage_v1beta1.types.TableReadOptions()
read_options.selected_fields.append("species_common_name")
read_options.selected_fields.append("fall_color")

parent = "projects/{}".format(your_project_id)
session = bqstorageclient.create_read_session(
table, parent, read_options=read_options
)

# This example reads from only a single stream. Read from multiple streams
# to fetch data faster. Note that the session may not contain any streams
# if there are no rows to read.
stream = session.streams[0]
position = bigquery_storage_v1beta1.types.StreamPosition(stream=stream)
reader = bqstorageclient.read_rows(position)

# Parse all Avro blocks and create a dataframe. This call requires a
# session, because the session contains the schema for the row blocks.
dataframe = reader.to_dataframe(session)
print(dataframe.head())
# [END bigquerystorage_pandas_tutorial_read_session]
# [END bigquerystorage_pandas_tutorial_all]

out, _ = capsys.readouterr()
assert "species_common_name" in out
5 changes: 5 additions & 0 deletions bigquery_storage/to_dataframe/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
google-auth==1.6.2
google-cloud-bigquery-storage==0.2.0
google-cloud-bigquery==1.8.1
fastavro==0.21.17
pandas==0.24.0
0