Si vous disposez d'ouvrages ou d'articles de référence ou si vous connaissez des sites web de qualité traitant du thème abordé ici, merci de compléter l'article en donnant les références utiles à sa vérifiabilité et en les liant à la section « Notes et références ».
C'est le cas par exemple de la loi de la variable aléatoire donnant le résultat du lancer d'une pièce équilibrée, avec deux modalités équiprobables : Pile, et Face. C'est aussi le cas de celle donnant le résultat du jet d'un dé équilibré.
Un exemple simple de loi discrète uniforme à modalités qualitatives est le lancer d’une pièce de monnaie équilibrée. L'ensemble des modalités possibles de est A = {Pile, Face} ; et à chaque fois que la pièce est lancée, la probabilité d’un résultat donné vaut
Un autre exemple est la loi donnant la couleur d'une carte tirée au hasard dans un jeu de 32 cartes indiscernables (sauf leurs faces). L'ensemble des couleurs possibles de est A = {Pique, Cœur, Carreau, Trèfle} ; et à chaque fois qu'une carte est tirée (avec remise), la probabilité d’un résultat donné vaut
Considérons l'événement « La couleur de la carte n'est pas Pique » : où B = {Cœur, Carreau, Trèfle}. Attention : en toute rigueur, n'est pas un événement de l'univers des 32 cartes, mais de l'univers image de par celui des quatre couleurs possibles. Le cardinal de est (et non pas 24), donc en appliquant la dernière formule du § Calcul d'une probabilité,
Un exemple simple de loi discrète uniforme à valeurs entières consécutives est le jet d’un dé non biaisé. L'ensemble des valeurs possibles de est et à chaque fois que le dé est jeté, la probabilité d’un résultat donné vaut
Le tableau ci-contre concerne la loi discrète uniforme sur l'ensemble Elle n'est qu'un cas particulier de loi discrète uniforme, mais elle est importante car elle génère l'ensemble des autres cas : si suit une loi discrète uniforme sur alors il existe une fonction telle que où est une variable aléatoire suivant la loi discrète uniforme sur l'ensemble De plus, si est quantitative, alors on peut prendre pour une fonction réelle infiniment dérivable[3].
L'espérance d'une variable aléatoire suivant la loi est[4]:
Si les modalités d’une variable aléatoire uniforme discrète sont des nombres (entiers ou réels), c.-à-d. si est une partie (finie) de ou alors on peut exprimer probabilité, espérance, et fonction de répartition (c.-à-d. distribution cumulative) en termes de distribution·s déterministe·s.
où désigne la fonction marche de Heaviside translatée de c.-à-d. la fonction de répartition correspondant à la distribution déterministe centrée en cette distribution est aussi appelée masse de Dirac en Cela suppose d'adopter la convention
De façon plus générale, si est une variable aléatoire suivant une loi uniforme discrète de support un ensemble (fini) quelconque, et si est une fonction définie sur et à valeurs réelles, alors, par théorème de transfert[8]:
Dé trapézoédrique à dix faces, numérotées 00, 10, 20, ···, 90.
Dé trapézoédrique à dix faces, numérotées de 0 à 9.
Par exemple, la somme des résultats d'un dé à dix faces numérotées en dizaines (00, 10, 20, ···, 90) et d'un dé à dix faces numérotées en unités (de 0 à 9) suit la loi discrète uniforme de support
Il est possible de simuler une loi uniforme discrète sur à l'aide de la loi uniforme continue sur en faisant l'observation suivante[10]: si suit la loi et si est définie par où est la fonction partie entière, alors suit la loi
↑ a et bMichel Lejeune, Statistique : la théorie et ses applications, Springer Science et Business Media, , p. 45, 46
↑Francesco Caravenna, Paolo Dai Pra et Quentin Berger, Introduction aux probabilités : Modèles et applications : mathématiques, physique, informatique, sciences de l'ingénieur, biologie, Dunod, , p. 156