Nullkoht
Artikkel vajab vormindamist vastavalt Vikipeedia vormistusreeglitele. |
See artikkel vajab toimetamist. |
Kui kahemõõtmelisel koordinaattasandil on (ühe sõltumatu ortogonaal ühikvektori kordaja --) parameeter y defineeritud (teise sõltumatu ortogonaal ühikvektori kordaja --) parameetri x funktsioonina , siis funktsiooni y(x) nullkohtadeks nimetatakse selle funktsiooni selliseid punkte mis on esitatavad üldkujul (x,0) või analüütiliselt pöördfunktsiooni kaudu y(x) = 0 ← sisestab tingimuse pöördfunktsiooni argumendiks → x(0) ← ja leiab nullkoht (või palju ... palju nullkohad , näit. y = Sin(x) või y=0 (y=0·x) , viimasel juhul on kogy x-telg üks suur "nullkoht" )
┌─────────────────────────────┐
│░░░░░░░░░░░░y░↑░░░░░░░░░/░░░░░░│
│░░░░░░░░░░░░░░│░░░y=x░░/░░░░░░░│
│░░░░░░░üks░░░░░│░░░░░/░░░░░░░░░│
│░░░░░░ühikvektor░_│░░░/░░░teine░░░░░│
│░░░░░░░░░░░░░1░↑░/░░░ühikvektor░░░│
│░←────────────┼→┌─────────→░│
│░░░░░░░░░░░░░/░│\░1░░░░░░░░░░x░│
│░░░░░░░░░░░/░░░│░░░Nullkoht░░░░░░│
│░░░░░░░░░/░░░░░│░░░░(x(0),0)░░░░░│
│░░░░░░░/░░░░░░░│░░░░░░░↑░░░░░░│
│░░░░░/░░░░░░░░░↓░░░░░░░y(x)=0░░░│
└─────────────────────────────┘
märkus : omapärane funktsiooni definitsioon on antud selleks et tagada ühilduvus mitmete teiste matemaatiliste aksioomide ja teoreemidega