[go: up one dir, main page]




Dates are inconsistent

Dates are inconsistent

997 results sorted by ID

2024/1622 (PDF) Last updated: 2024-10-10
A New Approach Towards Encrypted Data Sharing and Computation: Enhancing Efficiency Beyond MPC and Multi-Key FHE
Anil Kumar Pradhan
Cryptographic protocols

In this paper, we introduce a novel approach to Multi-Key Fully Homomorphic Encryption (MK-FHE) that enhances both efficiency and security beyond the capabilities of traditional MK-FHE and MultiParty Computation (MPC) systems. Our method generates a unified key structure, enabling constant ciphertext size and constant execution time for encrypted computations, regardless of the number of participants involved. This approach addresses critical limitations such as ciphertext size expansion,...

2024/1610 (PDF) Last updated: 2024-10-09
Secret Sharing with Snitching
Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, Marcin Mielniczuk
Foundations

We address the problem of detecting and punishing shareholder collusion in secret-sharing schemes. We do it in the recently proposed cryptographic model called individual cryptography (Dziembowski, Faust, and Lizurej, Crypto 2023), which assumes that there exist tasks that can be efficiently computed by a single machine but distributing this computation across multiple (mutually distrustful devices) is infeasible. Within this model, we introduce a novel primitive called secret sharing...

2024/1599 (PDF) Last updated: 2024-10-08
Simplified PIR and CDS Protocols and Improved Linear Secret-Sharing Schemes
Bar Alon, Amos Beimel, Or Lasri
Cryptographic protocols

We consider 3 related cryptographic primitives, private information retrieval (PIR) protocols, conditional disclosure of secrets (CDS) protocols, and secret-sharing schemes; these primitives have many applications in cryptography. We study these primitives requiring information-theoretic security. The complexity of these primitives has been dramatically improved in the last few years are they are closely related, i.e., the the 2-server PIR protocol of Dvir and Gopi (J. ACM 2016) was...

2024/1596 (PDF) Last updated: 2024-10-08
Secret Sharing with Publicly Verifiable Deletion
Jonathan Katz, Ben Sela
Cryptographic protocols

Certified deletion, an inherently quantum capability, allows a party holding a quantum state to prove that they have deleted the information contained in that state. Bartusek and Raizes recently studied certified deletion in the context of secret sharing schemes, and showed constructions with privately verifiable proofs of deletion that can be verified only by the dealer who generated the shares. We give two constructions of secret sharing schemes with publicly verifiable certified deletion....

2024/1590 (PDF) Last updated: 2024-10-08
Matching radar signals and fingerprints with MPC
Benjamin Hansen Mortensen, Mathias Karsrud Nordal, Martin Strand
Applications

Vessels can be recognised by their navigation radar due to the characteristics of the emitted radar signal. This is particularly useful if one wants to build situational awareness without revealing one's own presence. Most countries maintain databases of radar fingerprints but will not readily share these due to national security regulations. Sharing of such information will generally require some form of information exchange agreement. However, all parties in a coalition benefit from...

2024/1497 (PDF) Last updated: 2024-09-24
Low-degree Security of the Planted Random Subgraph Problem
Andrej Bogdanov, Chris Jones, Alon Rosen, Ilias Zadik
Foundations

The planted random subgraph detection conjecture of Abram et al. (TCC 2023) asserts the pseudorandomness of a pair of graphs $(H, G)$, where $G$ is an Erdos-Renyi random graph on $n$ vertices, and $H$ is a random induced subgraph of $G$ on $k$ vertices. Assuming the hardness of distinguishing these two distributions (with two leaked vertices), Abram et al. construct communication-efficient, computationally secure (1) 2-party private simultaneous messages (PSM) and (2) secret sharing for...

2024/1479 (PDF) Last updated: 2024-09-21
Honest Majority GOD MPC with $O(\mathsf{depth}(C))$ Rounds and Low Online Communication
Amit Agarwal, Alexander Bienstock, Ivan Damgård, Daniel Escudero
Foundations

In the context of secure multiparty computation (MPC) protocols with guaranteed output delivery (GOD) for the honest majority setting, the state-of-the-art in terms of communication is the work of (Goyal et al. CRYPTO'20), which communicates O(n|C|) field elements, where |C| is the size of the circuit being computed and n is the number of parties. Their round complexity, as usual in secret-sharing based MPC, is proportional to O(depth(C)), but only in the optimistic case where there is no...

2024/1477 (PDF) Last updated: 2024-09-21
Signature-based Witness Encryption with Compact Ciphertext
Gennaro Avitabile, Nico Döttling, Bernardo Magri, Christos Sakkas, Stella Wohnig
Public-key cryptography

Signature-based witness encryption (SWE) is a recently proposed notion that allows to encrypt a message with respect to a tag $T$ and a set of signature verification keys. The resulting ciphertext can only be decrypted by a party who holds at least $k$ different valid signatures w.r.t. $T$ and $k$ different verification keys out of the $n$ keys specified at encryption time. Natural applications of this primitive involve distributed settings (e.g., blockchains), where multiple parties sign...

2024/1473 (PDF) Last updated: 2024-09-20
A Note on Low-Communication Secure Multiparty Computation via Circuit Depth-Reduction
Pierre Charbit, Geoffroy Couteau, Pierre Meyer, Reza Naserasr
Cryptographic protocols

We consider the graph-theoretic problem of removing (few) nodes from a directed acyclic graph in order to reduce its depth. While this problem is intractable in the general case, we provide a variety of algorithms in the case where the graph is that of a circuit of fan-in (at most) two, and explore applications of these algorithms to secure multiparty computation with low communication. Over the past few years, a paradigm for low-communication secure multiparty computation has found success...

2024/1469 (PDF) Last updated: 2024-09-22
Password-Protected Threshold Signatures
Stefan Dziembowski, Stanislaw Jarecki, Paweł Kędzior, Hugo Krawczyk, Chan Nam Ngo, Jiayu Xu
Cryptographic protocols

We witness an increase in applications like cryptocurrency wallets, which involve users issuing signatures using private keys. To protect these keys from loss or compromise, users commonly outsource them to a custodial server. This creates a new point of failure, because compromise of such a server leaks the user’s key, and if user authentication is implemented with a password then this password becomes open to an offline dictionary attack (ODA). A better solution is to secret-share the key...

2024/1463 (PDF) Last updated: 2024-09-19
Asynchronous Verifiable Secret Sharing with Elastic Thresholds and Distributed Key Generation
Junming Li, Zhi Lu, Renfei Shen, Yuanqing Feng, Songfeng Lu
Public-key cryptography

Distributed Key Generation (DKG) is a technique that enables the generation of threshold cryptography keys among a set of mutually untrusting nodes. DKG generates keys for a range of decentralized applications such as threshold signatures, multiparty computation, and Byzantine consensus. Over the past five years, research on DKG has focused on optimizing network communication protocols to improve overall system efficiency by reducing communication complexity. However, SOTA asynchronous...

2024/1455 (PDF) Last updated: 2024-09-18
Threshold PAKE with Security against Compromise of all Servers
Yanqi Gu, Stanislaw Jarecki, Pawel Kedzior, Phillip Nazarian, Jiayu Xu
Cryptographic protocols

We revisit the notion of threshold Password-Authenticated Key Exchange (tPAKE), and we extend it to augmented tPAKE (atPAKE), which protects password information even in the case all servers are compromised, except for allowing an (inevitable) offline dictionary attack. Compared to prior notions of tPAKE this is analogous to replacing symmetric PAKE, where the server stores the user's password, with an augmented (or asymmetric) PAKE, like OPAQUE [JKX18], where the server stores a password...

2024/1445 (PDF) Last updated: 2024-09-16
Another Walk for Monchi
Riccardo Taiello, Emre Tosun, Alberto Ibarrondo, Hervé Chabanne, Melek Önen
Cryptographic protocols

Monchi is a new protocol aimed at privacy-preserving biometric identification. It begins with scores computation in the encrypted domain thanks to homomorphic encryption and ends with comparisons of these scores to a given threshold with function secret sharing. We here study the integration in that context of scores computation techniques recently introduced by Bassit et al. that eliminate homomorphic multiplications by replacing them by lookup tables. First, we extend this lookup tables...

2024/1409 (PDF) Last updated: 2024-09-10
Oraqle: A Depth-Aware Secure Computation Compiler
Jelle Vos, Mauro Conti, Zekeriya Erkin
Applications

In the past decade, tens of homomorphic encryption compilers have been released, and there are good reasons for these compilers to exist. Firstly, homomorphic encryption is a powerful secure computation technique in that it is relatively easy for parties to switch from plaintext computation to secure computations when compared to techniques like secret sharing. However, the technique is mathematically involved and requires expert knowledge to express computations as homomorphic encryption...

2024/1407 (PDF) Last updated: 2024-09-09
Encrypted MultiChannel Communication (EMC2): Johnny Should Use Secret Sharing
Gowri R. Chandran, Kilian Demuth, Kasra Edalatnejad, Sebastian Linsner, Christian Reuter, Thomas Schneider
Applications

Nowadays, the problem of point-to-point encryption is solved by the wide adaptation of protocols like TLS. However, challenges persist for End-to-End Encryption (E2EE). Current E2EE solutions, such as PGP and secure messengers like Signal, suffer from issues like 1) low usability, 2) small user base, 3) dependence on central service providers, and 4) susceptibility to backdoors. Concerns over legally mandated backdoors are rising as the US and EU are proposing new surveillance regulations...

2024/1394 (PDF) Last updated: 2024-09-13
SLAMP-FSS: Two-Party Multi-Point Function Secret Sharing from Simple Linear Algebra
Erki Külaots, Toomas Krips, Hendrik Eerikson, Pille Pullonen-Raudvere
Cryptographic protocols

Multiparty computation (MPC) is an important field of cryptography that deals with protecting the privacy of data, while allowing to do computation on that data. A key part of MPC is the parties involved having correlated randomness that they can use to make the computation or the communication between themselves more efficient, while still preserving the privacy of the data. Examples of these correlations include random oblivious transfer (OT) correlations, oblivious linear-function...

2024/1347 (PDF) Last updated: 2024-08-30
Secure Multiparty Computation with Lazy Sharing
Shuaishuai Li, Cong Zhang, Dongdai Lin
Cryptographic protocols

Secure multiparty computation (MPC) protocols enable $n$ parties, each with private inputs, to compute a given function without leaking information beyond the outputs. One of the main approaches to designing efficient MPC protocols is to use secret sharing. In general, secret sharing based MPC contains three phases: input sharing, circuit evaluation, and output recovery. If the adversary corrupts at most $t$ parties, the protocol typically uses $(t,n)$ threshold secret sharing to share the...

2024/1317 (PDF) Last updated: 2024-08-22
MAESTRO: Multi-party AES using Lookup Tables
Hiraku Morita, Erik Pohle, Kunihiko Sadakane, Peter Scholl, Kazunari Tozawa, Daniel Tschudi
Cryptographic protocols

Secure multi-party computation (MPC) enables multiple distrusting parties to jointly compute a function while keeping their inputs private. Computing the AES block cipher in MPC, where the key and/or the input are secret-shared among the parties is important for various applications, particularly threshold cryptography. In this work, we propose a family of dedicated, high-performance MPC protocols to compute the non-linear S-box part of AES in the honest majority setting. Our protocols...

2024/1283 (PDF) Last updated: 2024-08-14
Password-authenticated Cryptography from Consumable Tokens
Ghada Almashaqbeh
Cryptographic protocols

Passwords are widely adopted for user authentication in practice, which led to the question of whether we can bootstrap a strongly-secure setting based on them. Historically, this has been extensively studied for key exchange; bootstrap from a low-entropy password to a high entropy key securing the communication. Other instances include digital lockers, signatures, secret sharing, and encryption. Motivated by a recent work on consumable tokens (Almashaqbeh et al., Eurocrypt 2022), we...

2024/1274 (PDF) Last updated: 2024-08-16
Generation of Authenticated Secret-Shared Scaled Unit Vectors for Beaver Triples
Vincent Rieder
Cryptographic protocols

For secure multi-party computation in the line of the secret-sharing based SPDZ protocol, actively secure multiplications consume correlated randomness in the form of authenticated Beaver triples, which need to be generated in advance. Although it is a well-studied problem, the generation of Beaver triples is still a bottleneck in practice. In the two-party setting, the best solution with low communication overhead is the protocol by Boyle et al. (Crypto 2020), which is derived from...

2024/1268 (PDF) Last updated: 2024-08-15
Improved YOSO Randomness Generation with Worst-Case Corruptions
Chen-Da Liu-Zhang, Elisaweta Masserova, João Ribeiro, Pratik Soni, Sri AravindaKrishnan Thyagarajan
Cryptographic protocols

We study the problem of generating public unbiased randomness in a distributed manner within the recent You Only Speak Once (YOSO) framework for stateless multiparty computation, introduced by Gentry et al. in CRYPTO 2021. Such protocols are resilient to adaptive denial-of-service attacks and are, by their stateless nature, especially attractive in permissionless environments. While most works in the YOSO setting focus on independent random corruptions, we consider YOSO protocols with...

2024/1200 (PDF) Last updated: 2024-07-25
Depth-Aware Arithmetization of Common Primitives in Prime Fields
Jelle Vos, Mauro Conti, Zekeriya Erkin
Foundations

A common misconception is that the computational abilities of circuits composed of additions and multiplications are restricted to simple formulas only. Such arithmetic circuits over finite fields are actually capable of computing any function, including equality checks, comparisons, and other highly non-linear operations. While all those functions are computable, the challenge lies in computing them efficiently. We refer to this search problem as arithmetization. Arithmetization is a key...

2024/1160 (PDF) Last updated: 2024-07-17
Post-Quantum Access Control with Application to Secure Data Retrieval
Behzad Abdolmaleki, Hannes Blümel, Giacomo Fenzi, Homa Khajeh, Stefan Köpsell, Maryam Zarezadeh
Cryptographic protocols

Servan-Schreiber et al. (S&P 2023) presented a new notion called private access control lists (PACL) for function secret sharing (FSS), where the FSS evaluators can ensure that the FSS dealer is authorized to share the given function. Their construction relies on costly non-interactive secret-shared proofs and is not secure in post-quantum setting. We give a construction of PACL from publicly verifiable secret sharing (PVSS) under short integer solution (SIS). Our construction adapts the...

2024/1152 (PDF) Last updated: 2024-07-16
Secure Multiparty Computation of Symmetric Functions with Polylogarithmic Bottleneck Complexity and Correlated Randomness
Reo Eriguchi
Cryptographic protocols

Bottleneck complexity is an efficiency measure of secure multiparty computation (MPC) protocols introduced to achieve load-balancing in large-scale networks, which is defined as the maximum communication complexity required by any one player within the protocol execution. Towards the goal of achieving low bottleneck complexity, prior works proposed MPC protocols for computing symmetric functions in the correlated randomness model, where players are given input-independent correlated...

2024/1144 (PDF) Last updated: 2024-07-14
A Note on ``Secure and Distributed IoT Data Storage in Clouds Based on Secret Sharing and Collaborative Blockchain''
Zhengjun Cao, Lihua Liu
Attacks and cryptanalysis

We show that the data storage scheme [IEEE/ACM Trans. Netw., 2023, 31(4), 1550-1565] is flawed due to the false secret sharing protocol, which requires that some random $4\times 4$ matrixes over the finite field $F_p$ (a prime $p$) are invertible. But we find its mathematical proof for invertibility is incorrect. To fix this flaw, one needs to check the invertibility of all 35 matrixes so as to generate the proper 7 secret shares.

2024/1097 (PDF) Last updated: 2024-07-05
The Cost of Maintaining Keys in Dynamic Groups with Applications to Multicast Encryption and Group Messaging
Michael Anastos, Benedikt Auerbach, Mirza Ahad Baig, Miguel Cueto Noval, Matthew Kwan, Guillermo Pascual-Perez, Krzysztof Pietrzak
Cryptographic protocols

In this work we prove lower bounds on the (communication) cost of maintaining a shared key among a dynamic group of users. Being "dynamic'' means one can add and remove users from the group. This captures important protocols like multicast encryption (ME) and continuous group-key agreement (CGKA), which is the primitive underlying many group messaging applications. We prove our bounds in a combinatorial setting where the state of the protocol progresses in rounds. The state of the...

2024/1062 (PDF) Last updated: 2024-06-29
Compact Key Function Secret Sharing with Non-linear Decoder
Chandan Kumar, Sikhar Patranabis, Debdeep Mukhopadhyay
Foundations

We present a variant of Function Secret Sharing (FSS) schemes tailored for point, comparison, and interval functions, featuring compact key sizes at the expense of additional comparison. While existing FSS constructions are primarily geared towards $2$-party scenarios, exceptions such as the work by Boyle et al. (Eurocrypt 2015) and Riposte (S&P 2015) have introduced FSS schemes for $p$-party scenarios ($p \geq 3$). This paper aims to achieve the most compact $p$-party FSS key size to date....

2024/1061 (PDF) Last updated: 2024-06-29
Insta-Pok3r: Real-time Poker on Blockchain
Sanjam Garg, Aniket Kate, Pratyay Mukherjee, Rohit Sinha, Sriram Sridhar
Cryptographic protocols

We develop a distributed service for generating correlated randomness (e.g. permutations) for multiple parties, where each party’s output is private but publicly verifiable. This service provides users with a low-cost way to play online poker in real-time, without a trusted party. Our service is backed by a committee of compute providers, who run a multi-party computation (MPC) protocol to produce an (identity-based) encrypted permutation of a deck of cards, in an offline phase well ahead...

2024/1053 (PDF) Last updated: 2024-06-28
Stochastic Secret Sharing with $1$-Bit Shares and Applications to MPC
Benny Applebaum, Eliran Kachlon
Foundations

The problem of minimizing the share size of threshold secret-sharing schemes is a basic research question that has been extensively studied. Ideally, one strives for schemes in which the share size equals the secret size. While this is achievable for large secrets (Shamir, CACM '79), no similar solutions are known for the case of binary, single-bit secrets. Current approaches often rely on so-called ramp secret sharing that achieves a constant share size at the expense of a slight gap...

2024/1047 (PDF) Last updated: 2024-07-01
Improved Multi-Party Fixed-Point Multiplication
Saikrishna Badrinarayanan, Eysa Lee, Peihan Miao, Peter Rindal
Cryptographic protocols

Machine learning is widely used for a range of applications and is increasingly offered as a service by major technology companies. However, the required massive data collection raises privacy concerns during both training and inference. Privacy-preserving machine learning aims to solve this problem. In this setting, a collection of servers secret share their data and use secure multi-party computation to train and evaluate models on the joint data. All prior work focused on the scenario...

2024/1045 (PDF) Last updated: 2024-06-27
Efficient Secret Sharing for Large-Scale Applications
Sarvar Patel, Giuseppe Persiano, Joon Young Seo, Kevin Yeo
Cryptographic protocols

Threshold secret sharing enables distributing a message to $n$ parties such that no subset of fewer than $t$ parties can learn the message, whereas any subset of at least $t$ parties can recover the message. Despite being a fundamental primitive, secret sharing still suffers from one significant drawback, where its message reconstruction algorithm is computationally expensive for large privacy thresholds $t$. In this paper, we aim to address this significant drawback. We study general...

2024/1026 (PDF) Last updated: 2024-06-25
MaSTer: Maliciously Secure Truncation for Replicated Secret Sharing without Pre-Processing
Martin Zbudila, Erik Pohle, Aysajan Abidin, Bart Preneel
Cryptographic protocols

Secure multi-party computation (MPC) in a three-party, honest majority scenario is currently the state-of-the-art for running machine learning algorithms in a privacy-preserving manner. For efficiency reasons, fixed-point arithmetic is widely used to approximate computation over decimal numbers. After multiplication in fixed-point arithmetic, truncation is required to keep the result's precision. In this paper, we present an efficient three-party truncation protocol secure in the presence of...

2024/1012 (PDF) Last updated: 2024-08-25
Supersonic OT: Fast Unconditionally Secure Oblivious Transfer
Aydin Abadi, Yvo Desmedt
Cryptographic protocols

Oblivious Transfer (OT) is a fundamental cryptographic protocol with applications in secure Multi-Party Computation, Federated Learning, and Private Set Intersection. With the advent of quantum computing, it is crucial to develop unconditionally secure core primitives like OT to ensure their continued security in the post-quantum era. Despite over four decades since OT's introduction, the literature has predominantly relied on computational assumptions, except in cases using unconventional...

2024/1010 (PDF) Last updated: 2024-06-28
FSSiBNN: FSS-based Secure Binarized Neural Network Inference with Free Bitwidth Conversion
Peng Yang, Zoe Lin Jiang, Jiehang Zhuang, Junbin Fang, Siu Ming Yiu, Xuan Wang
Cryptographic protocols

Neural network inference as a service enables a cloud server to provide inference services to clients. To ensure the privacy of both the cloud server's model and the client's data, secure neural network inference is essential. Binarized neural networks (BNNs), which use binary weights and activations, are often employed to accelerate inference. However, achieving secure BNN inference with secure multi-party computation (MPC) is challenging because MPC protocols cannot directly operate on...

2024/999 (PDF) Last updated: 2024-10-08
ProxCode: Efficient Biometric Proximity Searchable Encryption from Error Correcting Codes
Maryam Rezapour, Benjamin Fuller
Applications

This work builds approximate proximity searchable encryption. Secure biometric databases are the primary application. Prior work (Kuzu, Islam, and Kantarcioglu, ICDE 2012) combines locality-sensitive hashes, or LSHs, (Indyk, STOC ’98), and oblivious multimaps. The multimap associates LSH outputs as keywords to biometrics as values. When the desired result set is of size at most one, we show a new preprocessing technique and system called ProxCode that inserts shares of a linear secret...

2024/988 (PDF) Last updated: 2024-07-03
Privacy-Preserving Dijkstra
Benjamin Ostrovsky
Cryptographic protocols

Given a graph $G(V,E)$, represented as a secret-sharing of an adjacency list, we show how to obliviously convert it into an alternative, MPC-friendly secret-shared representation, so-called $d$-normalized replicated adjacency list (which we abbreviate to $d$-normalized), where the size of our new data-structure is only 4x larger -- compared to the original (secret-shared adjacency list) representation of $G$. Yet, this new data structure enables us to execute oblivious graph algorithms that...

2024/972 (PDF) Last updated: 2024-06-16
Efficient Secure Communication Over Dynamic Incomplete Networks With Minimal Connectivity
Ivan Damgård, Divya Ravi, Lawrence Roy, Daniel Tschudi, Sophia Yakoubov
Cryptographic protocols

We study the problem of implementing unconditionally secure reliable and private communication (and hence secure computation) in dynamic incomplete networks. Our model assumes that the network is always $k$-connected, for some $k$, but the concrete connection graph is adversarially chosen in each round of interaction. We show that, with $n$ players and $t$ malicious corruptions, perfectly secure communication is possible if and only if $k > 2t$. This disproves a conjecture from earlier...

2024/968 (PDF) Last updated: 2024-06-20
Fast SNARK-based Non-Interactive Distributed Verifiable Random Function with Ethereum Compatibility
Jia Liu, Mark Manulis
Cryptographic protocols

Distributed randomness beacons (DRBs) are fundamental for various decentralised applications, such as consensus protocols, decentralised gaming and lotteries, and collective governance protocols. These applications are heavily used on modern blockchain platforms. This paper presents the so far most efficient direct construction and implementation of a non-interactive distributed verifiable random function (NI-DVRF) that is fully compatible with Ethereum. Our NI-DVRF scheme adopts...

2024/963 (PDF) Last updated: 2024-06-14
Shared OT and Its Applications to Unconditional Secure Integer Equality, Comparison and Bit-Decomposition
Lucas Piske, Jeroen van de Graaf, Anderson C. A. Nascimento, Ni Trieu
Cryptographic protocols

We present unconditionally perfectly secure protocols in the semi-honest setting for several functionalities: (1) private elementwise equality; (2) private bitwise integer comparison; and (3) bit-decomposition. These protocols are built upon a new concept called Shared Oblivious Transfer (Shared OT). Shared OT extends the one-out-of-N String OT by replacing strings with integers modulo $M$ and allowing additive secret-sharing of all inputs and outputs. These extensions can be...

2024/959 (PDF) Last updated: 2024-06-14
Flood and Submerse: Distributed Key Generation and Robust Threshold Signature from Lattices
Thomas Espitau, Guilhem Niot, Thomas Prest
Public-key cryptography

We propose a new framework based on random submersions — that is projection over a random subspace blinded by a small Gaussian noise — for constructing verifiable short secret sharing and showcase it to construct efficient threshold lattice-based signatures in the hash-and-sign paradigm, when based on noise flooding. This is, to our knowledge, the first hash-and-sign lattice-based threshold signature. Our threshold signature enjoys the very desirable property of robustness, including at key...

2024/937 (PDF) Last updated: 2024-06-11
Distributed Point Function with Constraints, Revisited
Keyu Ji, Bingsheng Zhang, Hong-Sheng Zhou, Kui Ren
Cryptographic protocols

Distributed Point Function (DPF) provides a way for a dealer to split a point function $f_{\alpha, \beta}$ into multiple succinctly described function-shares, where the function $f_{\alpha, \beta}$ for a special input $\alpha$, returns a special output value $\beta$, and returns a fixed value $0$ otherwise. As the security requirement, any strict subset of the function-shares reveals nothing about the function $f_{\alpha,\beta}$. However, each function-share can be individually evaluated on...

2024/912 (PDF) Last updated: 2024-06-07
Quantum Evolving Secret Sharing for General Access Structures
Efrat Cohen, Anat Paskin-Cherniavsky
Foundations

In the useful and well studied model of secret-sharing schemes, there are $n$ parties and a dealer, which holds a secret. The dealer applies some randomized algorithm to the secret, resulting in $n$ strings, called shares; it gives the $i$'th share to the $i$'th party. There are two requirements. (1) correctness: some predefined subsets of the parties can jointly reconstruct the secret from their shares, and (2) security: any other set gets no information on the secret. The collection of...

2024/904 (PDF) Last updated: 2024-06-06
On round elimination for special-sound multi-round identification and the generality of the hypercube for MPCitH
Andreas Hülsing, David Joseph, Christian Majenz, Anand Kumar Narayanan
Public-key cryptography

A popular way to build post-quantum signature schemes is by first constructing an identification scheme (IDS) and applying the Fiat-Shamir transform to it. In this work we tackle two open questions related to the general applicability of techniques around this approach that together allow for efficient post-quantum signatures with optimal security bounds in the QROM. First we consider a recent work by Aguilar-Melchor, Hülsing, Joseph, Majenz, Ronen, and Yue (Asiacrypt'23) that showed...

2024/902 (PDF) Last updated: 2024-06-06
Access Structure Hiding Verifiable Tensor Designs
Anandarup Roy, Bimal Kumar Roy, Kouichi Sakurai, Suprita Talnikar
Cryptographic protocols

The field of verifiable secret sharing schemes was introduced by Verheul et al. and has evolved over time, including well-known examples by Feldman and Pedersen. Stinson made advancements in combinatorial design-based secret sharing schemes in 2004. Desmedt et al. introduced the concept of frameproofness in 2021, while recent research by Sehrawat et al. in 2021 focuses on LWE-based access structure hiding verifiable secret sharing with malicious-majority settings. Furthermore, Roy et al....

2024/896 (PDF) Last updated: 2024-06-05
Dynamic-FROST: Schnorr Threshold Signatures with a Flexible Committee
Annalisa Cimatti, Francesco De Sclavis, Giuseppe Galano, Sara Giammusso, Michela Iezzi, Antonio Muci, Matteo Nardelli, Marco Pedicini
Cryptographic protocols

Threshold signatures enable any subgroup of predefined cardinality $t$ out of a committee of $n$ participants to generate a valid, aggregated signature. Although several $(t,n)$-threshold signature schemes exist, most of them assume that the threshold $t$ and the set of participants do not change over time. Practical applications of threshold signatures might benefit from the possibility of updating the threshold or the committee of participants. Examples of such applications are...

2024/876 (PDF) Last updated: 2024-09-22
Distributing Keys and Random Secrets with Constant Complexity
Benny Applebaum, Benny Pinkas
Cryptographic protocols

In the *Distributed Secret Sharing Generation* (DSG) problem $n$ parties wish to obliviously sample a secret-sharing of a random value $s$ taken from some finite field, without letting any of the parties learn $s$. *Distributed Key Generation* (DKG) is a closely related variant of the problem in which, in addition to their private shares, the parties also generate a public ``commitment'' $g^s$ to the secret. Both DSG and DKG are central primitives in the domain of secure multiparty...

2024/842 (PDF) Last updated: 2024-10-02
Computation Efficient Structure Aware PSI From Incremental Function Secret Sharing
Gayathri Garimella, Benjamin Goff, Peihan Miao
Cryptographic protocols

Structure-Aware Private Set Intersection (sa-PSI), recently introduced by Garimella et al. (Crypto'22), is a PSI variant where Alice's input set $S_A$ has a publicly known structure (for example, interval, ball or union of balls) and Bob's input $S_B$ is an unstructured set of elements. Prior work achieves sa-PSI where the communication cost only scales with the description size of $S_A$ instead of the set cardinality. However, the computation cost remains linear in the cardinality of $S_A$,...

2024/838 (PDF) Last updated: 2024-05-28
Verifiable Secret Sharing from Symmetric Key Cryptography with Improved Optimistic Complexity
Ignacio Cascudo, Daniele Cozzo, Emanuele Giunta
Cryptographic protocols

In this paper we propose verifiable secret sharing (VSS) schemes secure for any honest majority in the synchronous model, and that only use symmetric-key cryptographic tools, therefore having plausibly post-quantum security. Compared to the state-of-the-art scheme with these features (Atapoor et al., Asiacrypt `23), our main improvement lies on the complexity of the ``optimistic'' scenario where the dealer and all but a small number of receivers behave honestly in the sharing phase: in this...

2024/837 (PDF) Last updated: 2024-05-28
Fully Secure MPC and zk-FLIOP Over Rings: New Constructions, Improvements and Extensions
Anders Dalskov, Daniel Escudero, Ariel Nof
Cryptographic protocols

We revisit the question of the overhead to achieve full security (i.e., guaranteed output delivery) in secure multiparty computation (MPC). Recent works have closed the gap between full security and semi-honest security, by introducing protocols where the parties first compute the circuit using a semi-honest protocol and then run a verification step with sublinear communication in the circuit size. However, in these works the number of interaction rounds in the verification step is also...

2024/823 (PDF) Last updated: 2024-05-26
Batched Distributed Point Function from Sparse LPN and Homomorphic Secret Sharing
Lucas Piske, Jaspal Singh, Ni Trieu
Cryptographic protocols

A function secret sharing (FSS) scheme ($\mathsf{gen},\mathsf{eval}$) for a class of programs $\mathcal{F}$ allows a dealer to secret share any function $f \in \mathcal{F}$, such that each function share hides the function, and the shares can be used to non-interactively compute additive shares of $f(x)$ for any input $x$. All FSS related applications often requires the dealer to generate and share secret sharings for a batch of functions. We initiate the study of batched function secret...

2024/821 (PDF) Last updated: 2024-05-26
A General Framework for Lattice-Based ABE Using Evasive Inner-Product Functional Encryption
Yao-Ching Hsieh, Huijia Lin, Ji Luo
Public-key cryptography

We present a general framework for constructing attribute-based encryption (ABE) schemes for arbitrary function class based on lattices from two ingredients, i) a noisy linear secret sharing scheme for the class and ii) a new type of inner-product functional encryption (IPFE) scheme, termed *evasive* IPFE, which we introduce in this work. We propose lattice-based evasive IPFE schemes and establish their security under simple conditions based on variants of evasive learning with errors (LWE)...

2024/820 (PDF) Last updated: 2024-05-26
Rate-1 Arithmetic Garbling from Homomorphic Secret-Sharing
Pierre Meyer, Claudio Orlandi, Lawrence Roy, Peter Scholl
Cryptographic protocols

We present a new approach to garbling arithmetic circuits using techniques from homomorphic secret sharing, obtaining constructions with high rate that support free addition gates. In particular, we build upon non-interactive protocols for computing distributed discrete logarithms in groups with an easy discrete-log subgroup, further demonstrating the versatility of tools from homomorphic secret sharing. Relying on distributed discrete log for the Damgård-Jurik cryptosystem (Roy and Singh,...

2024/814 (PDF) Last updated: 2024-05-24
Succinct Homomorphic Secret Sharing
Damiano Abram, Lawrence Roy, Peter Scholl
Cryptographic protocols

This work introduces homomorphic secret sharing (HSS) with succinct share size. In HSS, private inputs are shared between parties, who can then homomorphically evaluate a function on their shares, obtaining a share of the function output. In succinct HSS, a portion of the inputs can be distributed using shares whose size is sublinear in the number of such inputs. The parties can then locally evaluate a function $f$ on the shares, with the restriction that $f$ must be linear in the succinctly...

2024/811 (PDF) Last updated: 2024-05-24
Traceable Secret Sharing Based on the Chinese Remainder Theorem
Charlotte Hoffmann
Cryptographic protocols

Traceable threshold secret sharing schemes, introduced by Goyal, Song and Srinivasan (CRYPTO'21), allow to provably trace leaked shares to the parties that leaked them. The authors give the first definition and construction of traceable secret sharing schemes. However, the size of the shares in their construction are quadratic in the size of the secret. Boneh, Partap and Rotem (CRYPTO'24) recently proposed a new definition of traceable secret sharing and the first practical constructions. In...

2024/789 (PDF) Last updated: 2024-06-02
Maliciously Secure Circuit-PSI via SPDZ-Compatible Oblivious PRF
Yaxi Yang, Xiaojian Liang, Xiangfu Song, Linting Huang, Hongyu Ren, Changyu Dong, Jianying Zhou
Cryptographic protocols

Circuit Private Set Intersection (Circuit-PSI) allows two parties to compute any functionality $f$ on items in the intersection of their input sets without revealing any information about the intersection set. It is a well-known variant of PSI and has numerous practical applications. However, existing circuit-PSI protocols only provide security against \textit{semi-honest} adversaries. One straightforward solution is to extend a pure garbled-circuit-based PSI (NDSS'12) to a maliciously...

2024/772 (PDF) Last updated: 2024-07-09
Reducing the Share Size of Weighted Threshold Secret Sharing Schemes via Chow Parameters Approximation
Oriol Farràs, Miquel Guiot
Foundations

A secret sharing scheme is a cryptographic primitive that allows a dealer to share a secret among a set of parties, so that only authorized subsets of them can recover it. The access structure of the scheme is the family of authorized subsets. In a weighted threshold access structure, each party is assigned a weight according to its importance, and the authorized subsets are those in which the sum of their weights is at least the threshold value. For these access structures, the share...

2024/751 (PDF) Last updated: 2024-05-16
Simultaneous Haar Indistinguishability with Applications to Unclonable Cryptography
Prabhanjan Ananth, Fatih Kaleoglu, Henry Yuen
Foundations

Unclonable cryptography is concerned with leveraging the no-cloning principle to build cryptographic primitives that are otherwise impossible to achieve classically. Understanding the feasibility of unclonable encryption, one of the key unclonable primitives, satisfying indistinguishability security in the plain model has been a major open question in the area. So far, the existing constructions of unclonable encryption are either in the quantum random oracle model or are based on new...

2024/736 (PDF) Last updated: 2024-05-13
Secret Sharing with Certified Deletion
James Bartusek, Justin Raizes
Foundations

Secret sharing allows a user to split a secret into many shares so that the secret can be recovered if, and only if, an authorized set of shares is collected. Although secret sharing typically does not require any computational hardness assumptions, its security does require that an adversary cannot collect an authorized set of shares. Over long periods of time where an adversary can benefit from multiple data breaches, this may become an unrealistic assumption. We initiate the...

2024/717 (PDF) Last updated: 2024-09-26
An Improved Threshold Homomorphic Cryptosystem Based on Class Groups
Lennart Braun, Guilhem Castagnos, Ivan Damgård, Fabien Laguillaumie, Kelsey Melissaris, Claudio Orlandi, Ida Tucker
Cryptographic protocols

We present distributed key generation and decryption protocols for an additively homomorphic cryptosystem based on class groups, improving on a similar system proposed by Braun, Damgård, and Orlandi at CRYPTO '23. Our key generation is similarly constant round but achieves lower communication complexity than the previous work. This improvement is in part the result of relaxing the reconstruction property required of the underlying integer verifiable secret sharing scheme. This eliminates the...

2024/716 (PDF) Last updated: 2024-06-16
Unclonable Secret Sharing
Prabhanjan Ananth, Vipul Goyal, Jiahui Liu, Qipeng Liu
Foundations

Unclonable cryptography utilizes the principles of quantum mechanics to addresses cryptographic tasks that are impossible classically. We introduce a novel unclonable primitive in the context of secret sharing, called unclonable secret sharing (USS). In a USS scheme, there are $n$ shareholders, each holding a share of a classical secret represented as a quantum state. They can recover the secret once all parties (or at least $t$ parties) come together with their shares. Importantly, it...

2024/700 (PDF) Last updated: 2024-09-05
Sublinear Distributed Product Checks on Replicated Secret-Shared Data over $\mathbb{Z}_{2^k}$ Without Ring Extensions
Yun Li, Daniel Escudero, Yufei Duan, Zhicong Huang, Cheng Hong, Chao Zhang, Yifan Song
Cryptographic protocols

Multiple works have designed or used maliciously secure honest majority MPC protocols over $\mathbb{Z}_{2^k}$ using replicated secret sharing (e.g. Koti et al. USENIX'21). A recent trend in the design of such MPC protocols is to first execute a semi-honest protocol, and then use a check that verifies the correctness of the computation requiring only sublinear amount of communication in terms of the circuit size. The so-called Galois ring extensions are needed in order to execute such checks...

2024/698 (PDF) Last updated: 2024-05-06
Private Computations on Streaming Data
Vladimir Braverman, Kevin Garbe, Eli Jaffe, Rafail Ostrovsky
Cryptographic protocols

We present a framework for privacy-preserving streaming algorithms which combine the memory-efficiency of streaming algorithms with strong privacy guarantees. These algorithms enable some number of servers to compute aggregate statistics efficiently on large quantities of user data without learning the user's inputs. While there exists limited prior work that fits within our model, our work is the first to formally define a general framework, interpret existing methods within this general...

2024/677 (PDF) Last updated: 2024-06-30
Asynchronous Consensus without Trusted Setup or Public-Key Cryptography
Sourav Das, Sisi Duan, Shengqi Liu, Atsuki Momose, Ling Ren, Victor Shoup
Cryptographic protocols

Byzantine consensus is a fundamental building block in distributed cryptographic problems. Despite decades of research, most existing asynchronous consensus protocols require a strong trusted setup and expensive public-key cryptography. In this paper, we study asynchronous Byzantine consensus protocols that do not rely on a trusted setup and do not use public-key cryptography such as digital signatures. We give an Asynchronous Common Subset (ACS) protocol whose security is only based on...

2024/654 (PDF) Last updated: 2024-04-29
Monchi: Multi-scheme Optimization For Collaborative Homomorphic Identification
Alberto Ibarrondo, Ismet Kerenciler, Hervé Chabanne, Vincent Despiegel, Melek Önen
Cryptographic protocols

This paper introduces a novel protocol for privacy-preserving biometric identification, named Monchi, that combines the use of homomorphic encryption for the computation of the identification score with function secret sharing to obliviously compare this score with a given threshold and finally output the binary result. Given the cost of homomorphic encryption, BFV in this solution, we study and evaluate the integration of two packing solutions that enable the regrouping of multiple...

2024/641 (PDF) Last updated: 2024-09-04
Rondo: Scalable and Reconfiguration-Friendly Randomness Beacon
Xuanji Meng, Xiao Sui, Zhaoxin Yang, Kang Rong, Wenbo Xu, Shenglong Chen, Ying Yan, Sisi Duan
Cryptographic protocols

We present Rondo, a scalable and reconfiguration-friendly distributed randomness beacon (DRB) protocol in the partially synchronous model. Rondo is the first DRB protocol that is built from batched asynchronous verifiable secret sharing (bAVSS) and meanwhile avoids the high $O(n^3)$ message cost, where $n$ is the number of nodes. Our key contribution lies in the introduction of a new variant of bAVSS called batched asynchronous verifiable secret sharing with partial output (bAVSS-PO)....

2024/625 (PDF) Last updated: 2024-09-20
Interactive Threshold Mercurial Signatures and Applications
Masayuki Abe, Masaya Nanri, Octavio Perez Kempner, Mehdi Tibouchi
Public-key cryptography

Mercurial signatures are an extension of equivalence class signatures that allow malleability for the public keys, messages, and signatures within the respective classes. Unfortunately, the most efficient construction to date suffers from a weak public key class-hiding property, where the original signer with the signing key can link the public keys in the same class. This is a severe limitation in their applications, where the signer is often considered untrustworthy of privacy. This...

2024/602 (PDF) Last updated: 2024-04-18
Secret-Sharing Schemes for High Slices
Amos Beimel, Oriol Farràs, Oded Nir
Foundations

In a secret-sharing scheme, a secret is shared among $n$ parties such that the secret can be recovered by authorized coalitions, while it should be kept hidden from unauthorized coalitions. In this work we study secret-sharing for $k$-slice access structures, in which coalitions of size $k$ are either authorized or not, larger coalitions are authorized and smaller are unauthorized. Known schemes for these access structures had smaller shares for small $k$'s than for large ones; hence our...

2024/582 (PDF) Last updated: 2024-08-18
Improved Alternating-Moduli PRFs and Post-Quantum Signatures
Navid Alamati, Guru-Vamsi Policharla, Srinivasan Raghuraman, Peter Rindal
Cryptographic protocols

We revisit the alternating-moduli paradigm for constructing symmetric-key primitives with a focus on constructing efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating-moduli paradigm of Boneh, Ishai, Passelègue, Sahai, and Wu (TCC 2018) enables the construction of various symmetric-key primitives with the common characteristic that the inputs are multiplied by two linear maps over different moduli. The first contribution focuses on...

2024/544 (PDF) Last updated: 2024-04-08
A post-quantum Distributed OPRF from the Legendre PRF
Novak Kaluderovic, Nan Cheng, Katerina Mitrokotsa
Cryptographic protocols

A distributed OPRF allows a client to evaluate a pseudorandom function on an input chosen by the client using a distributed key shared among multiple servers. This primitive ensures that the servers learn nothing about the input nor the output, and the client learns nothing about the key. We present a post-quantum OPRF in a distributed server setting, which can be computed in a single round of communication between a client and the servers. The only server-to-server communication occurs...

2024/506 (PDF) Last updated: 2024-03-29
A Decentralized Federated Learning using Reputation
Olive Chakraborty, Aymen Boudguiga
Applications

Nowadays Federated learning (FL) is established as one of the best techniques for collaborative machine learning. It allows a set of clients to train a common model without disclosing their sensitive and private dataset to a coordination server. The latter is in charge of the model aggregation. However, FL faces some problems, regarding the security of updates, integrity of computation and the availability of a server. In this paper, we combine some new ideas like clients’ reputation with...

2024/503 (PDF) Last updated: 2024-04-01
Two Levels are Better than One: Dishonest Majority MPC with $\widetilde{O}(|C|)$ Total Communication
Alexander Bienstock, Kevin Yeo
Cryptographic protocols

In recent years, there has been tremendous progress in improving the communication complexity of dishonest majority MPC. In the sub-optimal corruption threshold setting, where $t<(1-\varepsilon)\cdot n$ for some constant $0<\varepsilon\leq 1/2$, the recent works Sharing Transformation (Goyal $\textit{et al.}$, CRYPTO'22) and SuperPack (Escudero $\textit{et al.}$, EUROCRYPT'23) presented protocols with information-theoretic online phases achieving $O(1)$ communication per multiplication gate,...

2024/486 (PDF) Last updated: 2024-03-25
Anamorphic Encryption: New Constructions and Homomorphic Realizations
Dario Catalano, Emanuele Giunta, Francesco Migliaro
Public-key cryptography

The elegant paradigm of Anamorphic Encryption (Persiano et al., Eurocrypt 2022) considers the question of establishing a private communication in a world controlled by a dictator. The challenge is to allow two users, sharing some secret anamorphic key, to exchange covert messages without the dictator noticing, even when the latter has full access to the regular secret keys. Over the last year several works considered this question and proposed constructions, novel extensions and...

2024/470 (PDF) Last updated: 2024-05-29
Fast Secure Computations on Shared Polynomials and Applications to Private Set Operations
Pascal Giorgi, Fabien Laguillaumie, Lucas Ottow, Damien Vergnaud
Cryptographic protocols

Secure multi-party computation aims to allow a set of players to compute a given function on their secret inputs without revealing any other information than the result of the computation. In this work, we focus on the design of secure multi-party protocols for shared polynomial operations. We consider the classical model where the adversary is honest-but-curious, and where the coefficients (or any secret values) are either encrypted using an additively homomorphic encryption scheme or...

2024/466 (PDF) Last updated: 2024-03-20
Arctic: Lightweight and Stateless Threshold Schnorr Signatures
Chelsea Komlo, Ian Goldberg
Public-key cryptography

Threshold Schnorr signatures are seeing increased adoption in practice, and offer practical defenses against single points of failure. However, one challenge with existing randomized threshold Schnorr signature schemes is that signers must carefully maintain secret state across signing rounds, while also ensuring that state is deleted after a signing session is completed. Failure to do so will result in a fatal key-recovery attack by re-use of nonces. While deterministic threshold...

2024/453 (PDF) Last updated: 2024-03-16
Verifiable Information-Theoretic Function Secret Sharing
Stanislav Kruglik, Son Hoang Dau, Han Mao Kiah, Huaxiong Wang, Liang Feng Zhang
Cryptographic protocols

A function secret sharing (FSS) (Boyle et al., Eurocrypt 2015) is a cryptographic primitive that enables additive secret sharing of functions from a given function family $\mathcal{F}$. FSS supports a wide range of cryptographic applications, including private information retrieval (PIR), anonymous messaging systems, private set intersection and more. Formally, given positive integers $r \geq 2$ and $t < r$, and a class $\mathcal{F}$ of functions $f: [n] \to \mathbb{G}$ for an Abelian group...

2024/432 (PDF) Last updated: 2024-03-13
Perfect Asynchronous MPC with Linear Communication Overhead
Ittai Abraham, Gilad Asharov, Shravani Patil, Arpita Patra
Cryptographic protocols

We study secure multiparty computation in the asynchronous setting with perfect security and optimal resilience (less than one-fourth of the participants are malicious). It has been shown that every function can be computed in this model [Ben-OR, Canetti, and Goldreich, STOC'1993]. Despite 30 years of research, all protocols in the asynchronous setting require $\Omega(n^2C)$ communication complexity for computing a circuit with $C$ multiplication gates. In contrast, for nearly 15 years, in...

2024/419 (PDF) Last updated: 2024-03-10
New Upper Bounds for Evolving Secret Sharing via Infinite Branching Programs
Bar Alon, Amos Beimel, Tamar Ben David, Eran Omri, Anat Paskin-Cherniavsky
Foundations

Evolving secret-sharing schemes, defined by Komargodski, Naor, and Yogev [TCC 2016B, IEEE Trans. on Info. Theory 2018], are secret-sharing schemes in which there is no a-priory bound on the number of parties. In such schemes, parties arrive one by one; when a party arrives, the dealer gives it a share and cannot update this share in later stages. The requirement is that some predefined sets (called authorized sets) should be able to reconstruct the secret, while other sets should learn no...

2024/405 (PDF) Last updated: 2024-08-12
Traceable Secret Sharing: Strong Security and Efficient Constructions
Dan Boneh, Aditi Partap, Lior Rotem
Secret-key cryptography

Suppose Alice uses a $t$-out-of-$n$ secret sharing to store her secret key on $n$ servers. Her secret key is protected as long as $t$ of them do not collude. However, what if a less-than-$t$ subset of the servers decides to offer the shares they have for sale? In this case, Alice should be able to hold them accountable, or else nothing prevents them from selling her shares. With this motivation in mind, Goyal, Song, and Srinivasan (CRYPTO 21) introduced the concept of {\em traceable secret...

2024/391 (PDF) Last updated: 2024-03-03
On Information-Theoretic Secure Multiparty Computation with Local Repairability
Daniel Escudero, Ivan Tjuawinata, Chaoping Xing
Cryptographic protocols

In this work we consider the task of designing information-theoretic MPC protocols for which the state of a given party can be recovered from a small amount of parties, a property we refer to as local repairability. This is useful when considering MPC over dynamic settings where parties leave and join a computation, a scenario that has gained notable attention in recent literature. Thanks to the results of (Cramer et al. EUROCRYPT'00), designing such protocols boils down to...

2024/377 (PDF) Last updated: 2024-02-29
Connecting Leakage-Resilient Secret Sharing to Practice: Scaling Trends and Physical Dependencies of Prime Field Masking
Sebastian Faust, Loïc Masure, Elena Micheli, Maximilian Orlt, François-Xavier Standaert
Implementation

Symmetric ciphers operating in (small or mid-size) prime fields have been shown to be promising candidates to maintain security against low-noise (or even noise-free) side-channel leakage. In order to design prime ciphers that best trade physical security and implementation efficiency, it is essential to understand how side-channel security evolves with the field size (i.e., scaling trends). Unfortunately, it has also been shown that such a scaling trend depends on the leakage functions...

2024/376 (PDF) Last updated: 2024-03-13
Perfect (Parallel) Broadcast in Constant Expected Rounds via Statistical VSS
Gilad Asharov, Anirudh Chandramouli
Cryptographic protocols

We study broadcast protocols in the information-theoretic model under optimal conditions, where the number of corruptions $t$ is at most one-third of the parties, $n$. While worst-case $\Omega(n)$ round broadcast protocols are known to be impossible to achieve, protocols with an expected constant number of rounds have been demonstrated since the seminal work of Feldman and Micali [STOC'88]. Communication complexity for such protocols has gradually improved over the years, reaching $O(nL)$...

2024/370 (PDF) Last updated: 2024-09-16
Perfectly-Secure Multiparty Computation with Linear Communication Complexity over Any Modulus
Daniel Escudero, Yifan Song, Wenhao Wang
Cryptographic protocols

Consider the task of secure multiparty computation (MPC) among $n$ parties with perfect security and guaranteed output delivery, supporting $t<n/3$ active corruptions. Suppose the arithmetic circuit $C$ to be computed is defined over a finite ring $\mathbb{Z}/q\mathbb{Z}$, for an arbitrary $q\in\mathbb{Z}$. It is known that this type of MPC over such ring is possible, with communication that scales as $O(n|C|)$, assuming that $q$ scales as $\Omega(n)$. However, for constant-size rings...

2024/339 (PDF) Last updated: 2024-03-04
From Random Probing to Noisy Leakages Without Field-Size Dependence
Gianluca Brian, Stefan Dziembowski, Sebastian Faust
Foundations

Side channel attacks are devastating attacks targeting cryptographic implementations. To protect against these attacks, various countermeasures have been proposed -- in particular, the so-called masking scheme. Masking schemes work by hiding sensitive information via secret sharing all intermediate values that occur during the evaluation of a cryptographic implementation. Over the last decade, there has been broad interest in designing and formally analyzing such schemes. The random probing...

2024/335 (PDF) Last updated: 2024-02-26
Split-State Non-Malleable Codes and Secret Sharing Schemes for Quantum Messages
Naresh Goud Boddu, Vipul Goyal, Rahul Jain, João Ribeiro
Foundations

Non-malleable codes are fundamental objects at the intersection of cryptography and coding theory. These codes provide security guarantees even in settings where error correction and detection are impossible, and have found applications to several other cryptographic tasks. One of the strongest and most well-studied adversarial tampering models is $2$-split-state tampering. Here, a codeword is split into two parts which are stored in physically distant servers, and the adversary can then...

2024/326 (PDF) Last updated: 2024-02-26
Haven++: Batched and Packed Dual-Threshold Asynchronous Complete Secret Sharing with Applications
Nicolas Alhaddad, Mayank Varia, Ziling Yang
Cryptographic protocols

Asynchronous complete secret sharing (ACSS) is a foundational primitive in the design of distributed algorithms and cryptosystems that require secrecy. Dual-threshold ACSS permits a dealer to distribute a secret to a collection of $n$ servers so that everyone holds shares of a polynomial containing the dealer's secret. This work contributes a new ACSS protocol, called Haven++, that uses packing and batching to make asymptotic and concrete advances in the design and application of ACSS for...

2024/316 (PDF) Last updated: 2024-02-23
Threshold Garbled Circuits with Low Overhead
Schuyler Rosefield, abhi shelat, LaKyah Tyner
Cryptographic protocols

The folklore approach to designing a threshold variant of symmetric cryptographic algorithms involves applying generic MPC methods to se- cret sharing techniques: the MPC first combines participant input shares using the secret sharing scheme, and then evaluates the cryptographic function on the reconstructed key. Hardening this secure against n − 1 malicious parties requires some mechanism to ensure input consistency, e.g., adding MACs to inputs, which consequently, increases the...

2024/286 (PDF) Last updated: 2024-02-20
Efficient Zero-Knowledge Arguments and Digital Signatures via Sharing Conversion in the Head
Jules Maire, Damien Vergnaud
Cryptographic protocols

We present a novel technique within the MPC-in-the-Head framework, aiming to design efficient zero-knowledge protocols and digital signature schemes. The technique allows for the simultaneous use of additive and multiplicative sharings of secret information, enabling efficient proofs of linear and multiplicative relations. The applications of our technique are manifold. It is first applied to construct zero-knowledge arguments of knowledge for Double Discrete Logarithms (DDLP). The...

2024/280 (PDF) Last updated: 2024-10-05
HARTS: High-Threshold, Adaptively Secure, and Robust Threshold Schnorr Signatures
Renas Bacho, Julian Loss, Gilad Stern, Benedikt Wagner
Cryptographic protocols

Threshold variants of the Schnorr signature scheme have recently been at the center of attention due to their applications to cryptocurrencies. However, existing constructions for threshold Schnorr signatures among a set of $n$ parties with corruption threshold $t_c$ suffer from at least one of the following drawbacks: (i) security only against static (i.e., non-adaptive) adversaries, (ii) cubic or higher communication cost to generate a single signature, (iii) strong synchrony assumptions...

2024/275 (PDF) Last updated: 2024-02-22
The Multi-user Constrained PRF Security of Generalized GGM Trees for MPC and Hierarchical Wallets
Chun Guo, Xiao Wang, Xiang Xie, Yu Yu
Secret-key cryptography

Multi-user (mu) security considers large-scale attackers that, given access to a number of cryptosystem instances, attempt to compromise at least one of them. We initiate the study of mu security of the so-called GGMtree that stems from the PRG-to-PRF transformation of Goldreich, Goldwasser, and Micali, with a goal to provide references for its recently popularized use in applied cryptography. We propose a generalized model for GGM trees and analyze its mu prefix-constrained PRF security in...

2024/245 (PDF) Last updated: 2024-07-09
Linear-Communication Asynchronous Complete Secret Sharing with Optimal Resilience
Xiaoyu Ji, Junru Li, Yifan Song
Cryptographic protocols

Secure multiparty computation (MPC) allows a set of $n$ parties to jointly compute a function on their private inputs. In this work, we focus on the information-theoretic MPC in the \emph{asynchronous network} setting with optimal resilience ($t<n/3$). The best-known result in this setting is achieved by Choudhury and Patra [J. Cryptol '23], which requires $O(n^4\kappa)$ bits per multiplication gate, where $\kappa$ is the size of a field element. An asynchronous complete secret...

2024/243 (PDF) Last updated: 2024-07-10
Towards Achieving Asynchronous MPC with Linear Communication and Optimal Resilience
Vipul Goyal, Chen-Da Liu-Zhang, Yifan Song
Cryptographic protocols

Secure multi-party computation (MPC) allows a set of $n$ parties to jointly compute a function over their private inputs. The seminal works of Ben-Or, Canetti and Goldreich [STOC '93] and Ben-Or, Kelmer and Rabin [PODC '94] settled the feasibility of MPC over asynchronous networks. Despite the significant line of work devoted to improving the communication complexity, current protocols with information-theoretic security and optimal resilience $t<n/3$ communicate $\Omega(n^4C)$ field...

2024/239 (PDF) Last updated: 2024-05-26
Simulation-Secure Threshold PKE from Standard (Ring-)LWE
Hiroki Okada, Tsuyoshi Takagi
Public-key cryptography

Threshold public key encryption (ThPKE) is PKE that can be decrypted by collecting “partial decryptions” from t (≤ N) out of N parties. ThPKE based on the learning with errors problem (LWE) is particularly important because it can be extended to threshold fully homomorphic encryption (ThFHE). ThPKE and ThFHE are fundamental tools for constructing multiparty computation (MPC) protocols: In 2023, NIST initiated a project (NIST IR 8214C) to establish guidelines for implementing threshold...

2024/221 (PDF) Last updated: 2024-09-27
Mastic: Private Weighted Heavy-Hitters and Attribute-Based Metrics
Dimitris Mouris, Christopher Patton, Hannah Davis, Pratik Sarkar, Nektarios Georgios Tsoutsos
Cryptographic protocols

Insight into user experience and behavior is critical to the success of large software systems and web services. Gaining such insights, while preserving user privacy, is a significant challenge. Recent advancements in multi-party computation have made it practical to securely compute aggregates over secret shared data. Two such protocols have emerged as candidates for standardization at the IETF: Prio (NSDI 2017) for general-purpose statistics; and Poplar (IEEE S&P 2021) for heavy hitters,...

2024/198 (PDF) Last updated: 2024-10-06
Distributed Randomness using Weighted VUFs
Sourav Das, Benny Pinkas, Alin Tomescu, Zhuolun Xiang
Cryptographic protocols

Shared randomness in blockchain can expand its support for randomized applications and can also help strengthen its security. Many existing blockchains rely on external randomness beacons for shared randomness, but this approach reduces fault tolerance, increases latency, and complicates application development. An alternate approach is to let the blockchain validators generate fresh shared randomness themselves once for every block. We refer to such a design as the \emph{on-chain}...

2024/192 (PDF) Last updated: 2024-02-08
Direct FSS Constructions for Branching Programs and More from PRGs with Encoded-Output Homomorphism
Elette Boyle, Lisa Kohl, Zhe Li, Peter Scholl
Cryptographic protocols

Function secret sharing (FSS) for a class $\cal{F}$ allows to split a secret function $f \in \cal{F}$ into (succinct) secret shares $f_0,f_1$, such that for all $x\in \{0,1\}^n$ it holds $f_0(x)-f_1(x)=f(x)$. FSS has numerous applications, including private database queries, nearest neighbour search, private heavy hitters and secure computation in the preprocessing model, where the supported class $\cal{F}$ translates to richness in the application. Unfortunately, concretely efficient FSS...

2024/168 (PDF) Last updated: 2024-05-09
Dragon: Decentralization at the cost of Representation after Arbitrary Grouping and Its Applications to Sub-cubic DKG and Interactive Consistency
Hanwen Feng, Zhenliang Lu, Qiang Tang
Cryptographic protocols

Several distributed protocols, including distributed key generation (DKG) and interactive consistency (IC), depend on $\mathcal{O}(n)$ instances of Byzantine Broadcast or Byzantine Agreement among $n$ nodes, resulting in ${\Theta}(n^3)$ communication overhead. In this paper, we provide a new methodology of realizing such broadcasts we call DRAGON: Decentralization at the cost of Representation after Arbitrary GrOupiNg. At the core of it, we arbitrarily group nodes into small ``shards''...

2024/058 (PDF) Last updated: 2024-10-08
Constrained Pseudorandom Functions for Inner-Product Predicates from Weaker Assumptions
Sacha Servan-Schreiber
Foundations

In this paper, we provide a novel framework for constructing Constrained Pseudorandom Functions (CPRFs) with inner-product constraint predicates, using ideas from subtractive secret sharing and related-key-attack security. Our framework can be instantiated using a random oracle or any suitable Related-Key-Attack (RKA) secure pseudorandom function. This results in three new CPRF constructions: 1. an adaptively-secure construction in the random oracle model; 2. a selectively-secure...

2024/043 (PDF) Last updated: 2024-01-10
Fuzzy Identity Based Encryption with a flexible threshold value
Sedigheh Khajouei-Nejad, Sam Jabbehdari, Hamid Haj Seyyed Javadi, Seyed Mohammad Hossein Moattar
Public-key cryptography

The issue of data and information security on the internet and social network has become more serious and pervasive in recent years. Cryptography is used to solve security problems. However, message encryption cannot merely meet the intended goals because access control over the encrypted messages is required in some applications. To achieve these requirements, attribute-based encryption (ABE) is used. This type of encryption provides both security and access structure for the network users...

2024/034 (PDF) Last updated: 2024-10-15
How (not) to hash into class groups of imaginary quadratic fields?
István András Seres, Péter Burcsi, Péter Kutas
Secret-key cryptography

Class groups of imaginary quadratic fields (class groups for short) have seen a resurgence in cryptography as transparent groups of unknown order. They are a prime candidate for being a trustless alternative to RSA groups because class groups do not need a (distributed) trusted setup to sample a cryptographically secure group of unknown order. Class groups have recently found many applications in verifiable secret sharing, secure multiparty computation, transparent polynomial commitments,...

2024/031 (PDF) Last updated: 2024-03-21
Feldman's Verifiable Secret Sharing for a Dishonest Majority
Yi-Hsiu Chen, Yehuda Lindell
Cryptographic protocols

Verifiable secret sharing (VSS) protocols enable parties to share secrets while guaranteeing security (in particular, that all parties hold valid and consistent shares) even if the dealer or some of the participants are malicious. Most work on VSS focuses on the honest majority case, primarily since it enables one to guarantee output delivery (e.g., a corrupted recipient cannot prevent an honest dealer from sharing their value). Feldman's VSS is a well known and popular protocol for this...

Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.