
Secret Sharing with Snitching
Stefan Dziembowski

University of Warsaw and IDEAS NCBR

Warsaw, Poland

Sebastian Faust

Technische Universität Darmstadt

Darmstadt, Germany

Tomasz Lizurej

University of Warsaw and NASK

Warsaw, Poland

Marcin Mielniczuk

University of Warsaw

Warsaw, Poland

Abstract
We address the problem of detecting and punishing shareholder col-

lusion in secret-sharing schemes. We do it in the recently proposed

cryptographic model called individual cryptography (Dziembowski,

Faust, and Lizurej, Crypto 2023), which assumes that there exist

tasks that can be efficiently computed by a single machine but dis-

tributing this computation across multiple (mutually distrustful

devices) is infeasible.

Within this model, we introduce a novel primitive called secret
sharing with snitching (SSS), in which each attempt to illegally re-

construct the shared secret 𝑆 results in a proof that can be used to

prove such misbehavior (and, e.g., financially penalize the cheater

on a blockchain). This holds in a very strong sense, even if the share-

holders attempt not to reconstruct the entire secret 𝑆 but only learn

some partial information about it. Our notion also captures the

attacks performed using multiparty computation protocols (MPCs),

i.e., those where the malicious shareholders use MPCs to compute

partial information on 𝑆 . The main idea of SSS is that any ille-

gal reconstruction can be proven and punished, which suffices to

discourage illegal secret reconstruction. Hence, our SSS scheme

effectively prevents shareholders’ collusion. We provide a basic

definition of threshold (𝑡-out-of-𝑛) SSS. We then show how to con-

struct it for 𝑡 = 𝑛, and later, we use this construction to build an

SSS scheme for an arbitrary 𝑡 .

In order to prove the security of our construction, we introduce a

generalization of the random oracle model (Bellare, Rogaway, CCS

1993), which allows modelling hash evaluations made inside MPC.

CCS Concepts
• Security and privacy→ Cryptography; Cryptography.

Keywords
secret sharing, collusion prevention, front-running prevention

ACM Reference Format:
Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Miel-

niczuk. 2024. Secret Sharing with Snitching. In Proceedings of the 2024 ACM
SIGSAC Conference on Computer and Communications Security (CCS ’24),

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690296

October 14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,

14 pages. https://doi.org/10.1145/3658644.3690296

1 Introduction
Secret sharing [32] is a fundamental primitive in cryptography.

It is used when sensitive information must be kept secret, e.g.,

for storing secret keys, passwords, or confidential documents. Be-

yond its basic applications, secret sharing has found numerous

uses in cryptography, including multiparty computation protocols

(MPC) [5, 9, 19, 35] (that allow a group of mutually distrusting

parties to compute a function on secret inputs jointly), threshold

cryptography [30], private information retrieval [11], and many

more. While secret sharing comes in many different flavors, its

basic form allows a dealer D to share a secret 𝑆 ∈ {0, 1}∗ among

shareholders P1, . . . , P𝑛 . Given their shares, 𝑡 shareholders (where

𝑡 ≤ 𝑛 is a parameter called a threshold) can recover the secret 𝑆

by running the reconstruction algorithm. The two main properties

of a secret sharing scheme (share, rec) are correctness and security.
The former says that any set of 𝑡 shareholders can reconstruct the

shared secret. The latter guarantees that any shareholder set of at

most 𝑡 − 1 shareholders learns no information about the secret 𝑆 .

Hence, the crucial requirement for the security of secret sharing

is that no set of 𝑡 − 1 corrupt shareholders collaborates to recon-

struct the secret illegally. By “illegally,” we mean that shareholders

reconstruct the secret (or partial information of it) outside of the

situation that was agreed upon with the dealer. For example, if 𝑆 is a

blockchain transaction, then the dealer may want the shareholders

to reconstruct it only after some time has passed.

Unfortunately, if 𝑡 shareholders collude and send their shares

to each other, security completely collapses. Even worse, in this

case, the dealer D cannot determine that the collusion occurred

(unless she has access to an unprotected communication channel

between the shareholders), let alone prove this fact to any external

judge. For several applications (we describe them later), this poses

a significant problem, especially since the dishonest shareholders

may systematically exploit the fact that they secretly reconstruct

the shared secrets without the dealer noticing it. In this work, we

ask the following intriguing question:

Can we design a secret sharing scheme that deters the shareholders
from colluding by making such collusion provable to a judge?

We answer the question in the affirmative by introducing a new

cryptographic primitive that we call secret sharing with snitching
(SSS). On a high level, our primitive achieves collusion-resilience by

putting the shareholders in a situation akin to a prisoner’s dilemma

and exploiting the fact that they may have different economic

interests.

https://orcid.org/0000-0002-6914-6425
https://orcid.org/0000-0002-8625-4639
https://orcid.org/0000-0001-8563-4325
https://orcid.org/0009-0005-0335-7018
https://doi.org/10.1145/3658644.3690296
https://doi.org/10.1145/3658644.3690296

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

A secret sharing with snitching scheme consists of a special

procedure that allows one of the corrupt shareholders to “snitch”

on the other shareholder and prove to an external judge J that
the shareholders performed an illegal reconstruction of a secret 𝑆

(see below for the explanation of the practical instantiations of the

judge). More precisely, we have two new security requirements that

we term punishability and unframability. Punishability guarantees

that if a group of at least 𝑡 shareholders engage in any successful

illegal secret reconstruction protocol, then at least one of the share-

holders can generate a valid proof of punishment for the judge.

The unframability property protects any honest shareholder. More

precisely, any adversaryM that controlsD and all the shareholders,

except for some P𝑖 , cannot wrongly accuse P𝑖 in front of the judge.

Note that in our solution, we are not interested in the case when

there is one single adversary entity that controls at least 𝑡 of the

shareholders – indeed, in this case security is impossible as a single

adversarial entity knows the secret and does not need to collude

with any of the other shareholders.

In this work, we are interested in scenarios where all the share-
holders can be corrupt. One could be tempted to think of the

shareholders controlled by such a snitcher as “honest” (since they

are loyally helping the dealer to catch and punish the other adver-

saries). However, typically, in cryptography, the term “honest party”

is reserved to the one that strictly follows the protocol and does

nothing more. As a consequence, an honest party can never success-

fully snitch, as it cannot obtain valid snitching data without illegal

reconstruction. Since we needed to capture arbitrary illegal recon-

struction strategies we define such a “loyal snitcher” as another

adversarial party that, in the end, “betrays” other adversaries.

We believe that secret sharing with snitching has many practical

applications. We describe them in Section 1.1.

Instantiating the judge. The role of the judge is to punish the misbe-

having shareholders based on the evidence provided by the other

parties. The most natural instantiation of the judge is a smart con-
tract. Since smart contracts are placed on blockchains, their state

is public (and so, assuming their existence does not trivialize the

problem of constructing SSS). In our case, the concrete scenario

would be as follows. (1) The dealer deploys a judge smart contract

on the blockchain (or chooses an existing one), (2) the shareholders

deposit coins in it for some time 𝑇 , (3) once all the shareholders

place their deposits, the dealer shares his secret among them. The

secret should not be reconstructed until some time 𝑇 ′ ≪ 𝑇 . If the

contract receives a fraud proof against a shareholder P𝑖 before time

𝑇 ′, then (4) the coins of P𝑖 are confiscated. Note that this requires
a consensus between the parties about which smart contract they

use and which blockchain they use. In practice, it is up to the dealer

to communicate this information to the shareholders.

Our solution is not limited to blockchain applications. For exam-

ple, one can apply it to any setting where the shareholders have a

reputation (e.g., their reputation gradually grows with time based

on their history of honest behavior). In this case, it is sufficient that

the parties have access to a broadcast channel (or a “bulletin board”),

and all the messages that are “sent to the judge” are just broadcast

publicly. Since our judge is a deterministic machine with a public

state, every party can locally simulate its actions based on these

broadcasted messages and decide if a given shareholder is corrupt

or honest. Note that by the properties of the broadcast primitive,

all the honest parties will agree on the same corrupt shareholders.

Similarities with the blockchain models. Recall that in the standard

Byzantine security of distributed systems (see, e.g., [13]), a “cor-

ruption threshold 𝑡 − 1” means that at least 𝑛 − (𝑡 − 1) parties are
always perfectly honest, i.e. they follow the protocol faithfully and

leak no information, even if they could do it covertly and even if

they could benefit financially from it. While this approach works

very well in many settings (e.g. when the parties become malicious

only when they are hacked), it is not well-suited for scenarios when

the distributed algorithm is run between a group of anonymous
parties, with no prior reputation. The most notable example of such

a setting is the model used in several blockchain projects, starting

from Nakamoto’s Bitcoin work [28]. In such systems, the parties

are called the miners or the validators. Due to their anonymity,

unlike the standard distributed systems, it is unrealistic to assume

perfect honesty from any fraction of the parties. More precisely, one

typically thinks of a “corruption threshold” 𝑡 as the upper bound

on the size
1
of a malicious coalition of parties. Even though the

original Nakamoto’s paper did not have formal modeling (for more

formal papers on this topic, see, e.g., [16, 18, 31]), it is clear that

Bitcoin was designed to be incentive-compatible in the sense that at

the intuitive level, the parties are incentivized to behave honestly.

Hence, it is secure against any selfish behavior, or, more precisely,

as long as the adversary does not control a very large fraction of the

(computing power of) the parties, behaving honestly is the most

profitable strategy.

Similar logic is used in the Proof-of-Stake (PoStake) blockchains

(see, e.g., [8, 24]). In fact, making such protocols secure against

selfish behavior was one of the main reasons why the standard

consensus algorithms could not be used directly in this area. Sev-

eral PoStake blockchains contain mechanisms to discourage selfish

behavior. For example, in the Ethereum blockchain [8], the users are

penalized for “mining” on multiple competing blockchain branches

(the so-called “nothing at stake” attack, see, e.g., [8]). Such a mech-

anism would not be needed in settings where the majority of the

parties are perfectly honest.

While incentivizing correct behavior of the selfish parties is often
relatively simple (e.g., Ethereum discourages the “nothing at stake”

attack by penalizing parties who sign contradictory statements),

it is much less clear how to design systems that also incentivize

maintaining secrecy. Our work addresses this problem.

A straw-man idea. Let us briefly discuss why achieving our notion

of secret sharing with snitching is highly non-trivial. To this end,

consider the following simple approach. To share 𝑆 , the dealer D
generates shares 𝑆1, . . . , 𝑆𝑛 using the standard Shamir’s 𝑡-out-of-𝑛

secret sharing. It then signs each share 𝑆𝑖 with its secret key sk
and sends 𝑆𝑖 together with the signature 𝜎𝑖 to the corresponding

shareholder P𝑖 . A naive idea could now be to define the proof of

punishment as a share 𝑆𝑖 signed by D (or more generally, one could

think of a proof as a log of communicationwith the party holding 𝑆𝑖).

Clearly, if a shareholder P̂
𝑖
(for �̂� ≠ 𝑖) can provide such a proof, then

this shows that P𝑖 illegally sent its share to P̂
𝑖
. There are, however,

1
Often measured in terms of computing power (the Proofs-of-Work blockchains), or

financial resources (the Proofs-of-Stake blockchains).

Secret Sharing with Snitching CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

multiple apparent problemswith this approach. First, nothing forces

P𝑖 to run such a trivial collusion by just sending (𝑆𝑖 , 𝜎𝑖) to P
�̂�
. In

fact, the same attack works if each P𝑖 strips 𝜎𝑖 off its share and just

sends 𝑆𝑖 to the other colluding parties. One might hope this attack

applies to our particular (naive) sharing scheme. Unfortunately, this

is not the case. Even if the shares do not contain an obvious part to

be “stripped off,” the malicious shareholders can apply much more

sophisticated strategies, especially since we must assume that the

shareholders know the judge and choose their collusion method

to prevent punishment. A particular subtle adversarial strategy

is what we call an MPC attack, where the malicious shareholders

run a multiparty-party (MPC) protocol [5, 9, 19, 35] in which each

shareholder provides as input its secret share 𝑆𝑖 , and the protocol

securely computes the reconstruction function. In this way, the

malicious shareholders may extract all the information about 𝑆 that

is relevant to them without learning the entire 𝑆 or each other’s

shares. Hence, the knowledge of 𝑆 or the other party’s share cannot

serve as collusion proof. The second problem of the straw man

solution is that in our setting, a monolithic adversary controlling

the dealer and one of the shareholders can trivially frame the other

shareholder as it is aware of all information required to compute

the proof of punishment.

Note that the MPC attack may look like something impossible to

prevent, especially given the recent advances in the efficiency of the

MPC protocols (see, e.g., [22]). In this paper, we challenge this by

relying on the recently-introduced idea of individual cryptography
[15] (similar ideas appeared independently in [23]). Informally, in-
dividual cryptography studies functions that are hard to implement

in MPC or TEEs (i.e., “Trusted execution environments”, see, e.g.,

[34]). This is done by designing “MPC-hard functions” which work

by requiring a large number of hash evaluations. This choice comes

from the fact that hashes (such as those from the SHA family) do

not have an algebraic structure that could be exploited in an MPC

attack. In the model of [15], it is assumed that a small number of

hashes can actually be computed in an MPC, but the fast computa-

tion of a massive amount of hashes is infeasible (see Sect. 2 for the

details).

Our contributions. As highlighted above, we introduce a new vari-

ant of secret sharing that we call secret sharing with snitching (SSS).
Our contributions can be summarized as follows.

(1) We define the notion of 𝑡-out-of-𝑛 secret sharing with snitch-

ing in the individual cryptography model of [15] (see Sect. 2).

As already highlighted, this means that we base “MPC-hard-

ness” on the assumption that computing massive amounts of

hashes quickly in MPC is infeasible. At the same time, per-

forming such computations individually can be done very

efficiently.

(2) We construct (in Sect. 3) an 𝑛-out-of-𝑛 SSS and then, using

this construction as a building block, a 𝑡-out-of-𝑛 SSS for an

arbitrary 𝑡 (see Sect. 4). We remark that starting with the

construction of an 𝑛-out-of-𝑛 scheme serves two purposes.

First, our 𝑛-out-of-𝑛 scheme offers better efficiency than

what can currently be achieved by our generic construction

of a 𝑡-out-of-𝑛 SSS. Second, our 𝑛-out-of-𝑛 scheme is an

important building block for our construction of the 𝑡-out-

of-𝑛 SSS and hence helps with modularization.

(3) We prove the security of our constructions. Our scheme is

secure assuming that the number of hashes computed “in

MPC” by the adversarial parties is a constant fraction of

the number of hashes computed by the honest users of the

protocol.
2

1.1 Applications
Our solution can be used in scenarios where a client (acting as the

dealer) needs to temporarily share its secret with external servers,

with the intention that the secret become public at some point.

The judge (say, a smart contract) comes with a condition when the

secret is allowed to be reconstructed. Any attempt by malicious

shareholders to reconstruct the secret before this condition is met

allows the punishment of parties involved in the illegal reconstruc-

tion. Such punishment may, e.g., result in slashing some deposits

that the shareholders had to put into the judge’s smart contract,

thus disincentivizing collusion among the shareholders. Hence, the

client is guaranteed that if the servers attempt to reconstruct the key

material illegally, they always risk punishment. On the other hand,

thanks to the unframability property, an honest server that plays by

the rules of the game never faces the risk of being falsely accused.

We emphasize that our notion of secret sharing with snitching

very much resembles how collusion is prevented in the real world.

For example, illegal price agreements between companies or stock

market manipulation is often contained in practice by putting high

punishments when cheating is detected.

As a more concrete application, consider the front-running at-
tacks [3, 14]. This class of powerful attacks is based on the fact

that most of the blockchains are asynchronous, in the sense that

a transaction tx that is sent to them becomes public before it is
accepted into the blockchain. This means that powerful actors (e.g.,

the miners) can place their transactions earlier on the blockchain,

even though they were produced later than tx (and possibly de-

pending on it). Such attacks can lead to risk-free financial arbitrage

and are routinely carried out in practice, leading to huge financial

losses for honest blockchain users.

One way to thwart such attacks is the use of consortium-based

blockchain solutions like the Shutter network
3
or i-TiRE [2]. The

consortia are responsible for making sure that all the transactions

that were submitted in a given time period are decrypted simultane-

ously, hence preventing the front-running problem. Such solutions

are based on secret sharing and their security currently relies on

strong honesty assumptions about the underlying consortia. In

short, it is assumed that at most 𝑡 − 1 consortium members are

corrupt, and the remaining ones are perfectly honest. This assump-

tion is problematic in the blockchain settings, as nothing prevents

𝑡 consortium members from secretly reconstructing user transac-

tions and performing front-running covertly. SSS can be used in

this setting to prevent such covert illegal reconstruction of secrets.

More precisely, each user of the system would share his transac-

tion with the consortium members using SSS, and the transactions

would be reconstructed only after some time has passed (earlier

reconstruction would be punished).

2
The honest users are not required to compute hashes in MPC during reconstruction.

3
See https://shutter.network.

https://shutter.network

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

Another class of applications are the online sealed-bid auctions,

where the auctioneers should cast their bids without knowing the

other bids. Yet another ones, are voting protocols, in order to prevent

the tactical voting. In all of these cases, the bids/votes would be

shared using SSS with a consortium of trustees, who would open

them only once the auction/voting is over. Finally, one can use our

solution to implement secure document discourse after an embargo

period: a user that wants to publish a document after some embargo

time, can use SSS to share it. In this way, she can be sure that it

remains secret until the embargo is over, but then it gets published,

even if she goes offline.

Note that all of the above examples can be generalized to a wider

class of reconstruction conditions. For example, the reconstruction

point can be defined not only depending on time but also on some

event happening, e.g., the transactions should get reconstructed

only when an exchange rate of some digital asset reaches a cer-

tain point, or when a document that was embargoed can be safely

released, because some external entity agreed on it.

Another type of application where these ideas can be useful is

the private-information retrieval schemes where two (or more) non-

colluding servers allow more efficient solutions than single-server

ones (see, e.g., [12]). We leave exploring these ideas as future work.

1.1.1 Comparison with alternative solutions. Let us also compare

our solution with the alternative ones. An obvious alternative cryp-

tographic approach to the front-running problem listed above is

to use cryptographic commitments, the so-called commit-reveal
technique. In practice, unfortunately, this solution does not work,

since the users can always refrain from opening their transactions

after seeing the openings of the other ones or submit several trans-

actions, and only later decide which of them to open. In principle

this could be addressed by forcing the users to put deposits (and

slashing them if they do not open their commitments), but this

solution is considered impractical as it affects the users experience,

and exposes them to the risk of losing money if they accidentally

lose the Internet connection. In the case of voting, requiring the

users two interact with the system twice (for “commit” and for

“reveal”) may clearly be impractical.

Another class of alternative solutions is to use time-based cryp-
tography [29], where a message is encrypted in such a way that

decrypting it takes a substantial amount of sequential work. The

main problem with such solutions is the need to estimate hardness

of the underlying computational problems. If decrypting a puzzle

takes time𝑇 on the honest users computers, then it is prudent to as-

sume that the adversary can do it much faster (say: in time𝑇 ′ ≪ 𝑇),

due to the fact that she may have a better hardware or know better

algorithms. This means that it is impossible to precisely estimate

time when a given secret will be made public. For example, for

the front-running prevention, this would mean that in the time

period between𝑇 ′ and𝑇 no new message can be posted, but the old

messages are still not known publicly. In case of voting, this would

mean that the time between closing the voting, and announcing

the result is long. This problem gets even larger if we allow the

messages to be posted in relatively long period. For example, this

is the case in the case of voting, as it would mean that the time

between closing the vote and announcing the result is probably

longer than the duration of the voting. Our solution does not have

this problem, since the amount of work that needs to be done by

the honest parties is much smaller than the work that has to be

performed by the adversaries (if they want to avoid punishment

then need to perform the same work as the honest parties, but in

MPC).

1.2 Other related work
As discussed above, secret sharing comes in many flavors, and

we only discuss the most relevant works here. Our model is a bit

reminiscent of the work on rational cryptography, see, e.g., [17]
and the rational secret sharing [21]. This notion studies how to

incentivize rational shareholders to collaborate to reconstruct the

secret. Hence, rational secret sharing is dual to our notion of secret

sharing with snitching. The main difference is that in our model-

ing, we do not rely on game theory. Instead, we use techniques

from individual cryptography. Another important line of related

research is on collusion-free protocols [1, 25, 33]. However, these

works do not consider the MPC attacks, one of the core problems

we prevent in our work. Following a long line of work on traitor

tracing, there has recently been some important work on lifting

traitor tracing to the threshold setting [6, 7]. Both works consider

a setting where a (sub)set of malicious shareholders cooperate to

build a decryption/reconstruction box that contain partial informa-

tion about the secret shares of the parties. The security property

guarantees that such colluders can be traced via a tracing algo-

rithm that has black box access to the decryption/reconstruction

box. The main difference between traitor tracing threshold crypto

schemes and our work is that [6, 7] do not protect against the MPC

attacks. In particular, they consider that running an MPC protocol

to compute a function depending on all secret shares is outside their

model. On the positive side, by eliminating MPC attacks from their

model, their security guarantees do not rely on the MPC hardness

of certain functions. Recently, [20] consider how to de-incentivize

collusion in multi-server PIR.

2 The definition of the Secret Sharing with
Snitching

This section provides a formal description of our model and security

definitions. Let 1
𝜅
be a security parameter and let 𝐻 : {0, 1}2𝜅 →

{0, 1}𝜅 be a functionmodeled as a random oracle [4], denoted as Ω𝐻 .

Note that, similarly to [15], we consider hashes of short input (in

practice, 𝐻 could simply be a Merkle-Damgard hash compression

function). See [15] for the discussion on this assumption.

The 𝑖-th bit of a binary string 𝑌 is denoted as 𝑌 [𝑖]. Let 𝑒 de-

note Euler’s constant, and let exp(𝑥) := 𝑒𝑥 . For 𝑛 ∈ N, let [𝑛] =
{1, . . . , 𝑛}.Wewill also use Shamir’s secret sharing [32] as a building

block. Let (F, ⊕,×) be a finite field and let 𝑡 ≤ 𝑛. Shamir’s 𝑡-out-of-𝑛

secret sharing is a pair of algorithms (shareShamir
(𝑡,𝑛) , recShamir

(𝑡,𝑛)) de-
fined as follows. Let 1, . . . , 𝑛 be some distinct elements of F. Then for
𝑆 ∈ F we define shareShamir

(𝑡,𝑛) (𝑆) := ((1, 𝑃 (1)), . . . , (𝑛, 𝑃 (𝑛))), where
𝑃 is a random polynomial over F with degree at most 𝑡 − 1 such
that 𝑃 (0) = 𝑆 and recShamir

(𝑡,𝑛) ((𝑖1, 𝑋1), . . . , (𝑖𝑡 , 𝑋𝑡)) := 𝑃 ′ (0), where
𝑃 ′ is the polynomial of degree at most 𝑡 interpolated at points (𝑖1,
𝑋1), . . . , (𝑖𝑡 , 𝑋𝑡). It is well-known [32] that such interpolation is

Secret Sharing with Snitching CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

always possible, while the set of at most 𝑡 − 1 shares 𝑃 (𝑖) reveals
no information about 𝑆 .

2.1 Basic setting and terminology
Secret sharing with snitching (SSS) with respect to an oracle Ω𝐻 is a

tuple Π := (J,D, P1, . . . , P𝑛,ΩMPC
𝐻
) of interactive polynomial-time

machines with access to Ω𝐻 . Machines J and ΩMPC
𝐻

are determin-

istic, and the others are randomized. Machine ΩMPC
𝐻

is stateless.

An SSS scheme Π is parametrized by three parameters: the recon-
struction threshold 𝑡 ∈ N (with 𝑡 ≤ 𝑛), the adversarial slow query
budget 𝜎 ∈ N (the notion of “slow queries” is defined below), and

the length 𝜆 of the shared secret 𝑆 (𝜆 is a polynomial function of

the security parameter). We will also say that Π is 𝑡-out-of-𝑛-SSS.
We will refer to J as the judge, to D as the dealer, to the P𝑖 ’s as

the shareholders, and to ΩMPC
𝐻

as the multi-party random oracle.
The parties operate in a synchronous network, are connected by

private channels, and have access to a broadcast channel. Time is

divided into rounds, and the messages sent in round 𝑗 arrive at the

destination in round 𝑗 + 1. The judge’s state is public (recall that
we think of it as a smart contract or a public bulletin board, see Sec-

tion 1): it is broadcast to all the parties in every round. We consider

two types of adversarial models: the monolithic and the distributed
one. In both of them, the adversary (or the “subadversaries”, see

below) can corrupt some parties. Once a (sub)adversary corrupts

some party, it completely controls it: it learns P𝑗 ’s entire state and
history and receives and sends messages in P𝑗 ’s name. A party that

is not corrupt is honest. The judge J and the multi-party random or-

acle ΩMPC
𝐻

are always honest. We explain the role and operation of

ΩMPC
𝐻

in Section 2.1.3. First, let us describe the different adversarial

models. The first one, which we refer to as the monolithic model, is
used in the unframability definition, while the second one, called

the distributed model, is used in the punishability definition.

2.1.1 Monolithic adversarial model. The monolithic model is used

in the definition of unframability of SSS. It is the standard crypto-

graphic model, in which amonolithic active polynomial-time adver-

saryM can adaptively corrupt parties from the set {D, P1, . . . , P𝑛}.
The adversary can access Ω𝐻 freely. A monolithic adversary is

rushing and controls the network.

2.1.2 Distributed adversarial model. For the punishability defi-

nition, we consider a distributed adversarial model, in which a

protocol is attacked by a distributed adversary, which is a tuple

A := (A1, . . . ,A𝑎) of randomized polynomial-time machines

called subadversaries. This model is a variant of the one introduced

in Dziembowski et al. [15] (see also Section 2.4.1 for a comparison

between our model and the model of [15]),

During the execution of a protocol, the subadversaries can com-

municate freely. Each subadversary can corrupt some sharehold-

ers (in this setting, both J and D are incorruptible
4
) and take con-

trol over it. Let C𝑗 denote a set of parties that are corrupted by

a subadversaryA 𝑗 . We will call such C𝑗 , the A 𝑗 ’s coalition. We

require that all the coalition are pairwise disjoint, i.e., we consider

only distributed adversaries A such that no 𝑃 𝑗 is corrupt by more

than one subadversary. We require that A is 𝑡-bounded (where the

4
We can assume that the dealer is incorruptible because the distributed adversarial

model is used in the punishability definition only.

𝑡 is the reconstruction threshold, see above), by which we mean

that the size of each coalition C𝑖 is less than 𝑡 . One can think of

the coalitions as the Sybil identities of a subadversary or as a set of

parties that ultimately trust and never betray each other.

The adversary A communicates with the outside world via one

of the subadversaries, say A1, who can pass the received messages

between the other subadversaries and the external entities. When

we say that a message𝑚 is sent to (or “sent by") A, we mean that

it is sent to (or “sent by”, resp.) A1. The subadversary A1 gets as

input 1
𝜅
and passes it to the other subadversaries. It also controls

the network (we assume a rushing model).

2.1.3 The multi-party random oracle. In order to model the evalua-

tions of 𝐻 done over MPC, we introduce a natural generalization

of the random oracle model of [4]. As mentioned before, we allow

the honest parties and the adversary to evaluate a random hash

function 𝐻 : {0, 1}2𝜅 → {0, 1}𝜅 . We do it in two ways. First, each

of them can directly access Ω𝐻 and query it on the inputs of their

choice. Second, we need to model the fact that both the honest par-

ties and the adversary are allowed to compute a restricted number

of hashes 𝐻 in a distributed way using an MPC protocol. We do

it by letting them access Ω𝐻 via the multi-party random oracle

ΩMPC
𝐻

(see below for the details) and imposing a more restrictive

bound on the number of times they can call ΩMPC
𝐻

. The queries

to Ω𝐻 are called fast, while the queries to ΩMPC
𝐻

are referred to

as slow. The number of fast queries is not restricted (can be an

arbitrary polynomial in 𝜅), while the number of slow queries is

bounded (for the adversary), or considered to be an important effi-

ciency parameter (for the honest parties). This corresponds to the

fact that the execution of an MPC protocol is slow and expensive,

orders of magnitude slower than an individual evaluation of a hash

function. We describe the interaction between the oracles and the

other entities in the system below (see also Fig. 1 for its graphical

presentation).

D, P1, . . . , P𝑛, J

ΩMPC
𝐻

Ω𝐻

A1, . . . ,A𝑎

slow
qu
eries fa

st
qu
er
ie
s

sl
ow

qu
er
ie
s fast

qu
eries

ΩMPC
𝐻

can query Ω𝐻

once per slow query

Figure 1: The interaction in the system.

The use of ΩMPC
𝐻

by the honest parties. The honest parties query
ΩMPC
𝐻

as follows. Each partyD, P1, . . . , P𝑛 sends its input 𝑥D, 𝑥1, . . . ,

𝑥𝑛 (respectively) to the oracle ΩMPC
𝐻

. The multi-party random ora-

cle performs deterministic precomputation 𝜑 on these inputs and

queries Ω𝐻 , obtaining 𝑦 = 𝐻 (𝜑 (𝑥D, 𝑥1, . . . , 𝑥𝑛)). Only one query to
Ω𝐻 is allowed for each call to ΩMPC

𝐻
. Then, the multi-party random

oracle passes the oracle response 𝑦 to one of the subadversaries

(say: toA1), who can deliver to each party either the actual value 𝑦

or ⊥, in which case we say that the computation failed. This models

the fact that in the dishonest majority settings, the adversary can

always abort the protocol and prevent some parties from learning

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

the output. In practice, such multi-party calls can be implemented

using standard techniques for the MPC (see, e.g., [13]).

The use of ΩMPC
𝐻

by the distributed adversary. In the distributed

adversarial model, the subadversaries can access the ΩMPC
𝐻

exactly

like the honest parties, except we assume that the output is always

delivered to them. More concretely, each subadversary A1, . . . ,A𝑎

sends its input 𝑥1, . . . , 𝑥𝑎 (respectively) to the oracle Ω
MPC
𝐻

. The ora-

cle ΩMPC
𝐻

queries Ω𝐻 once and sends the output of this computation

to all the subadversaries.

The execution of a protocol is divided into the precomputation
epoch and the online epoch (which itself consists of three phases,

see Section 2.2) happening one after another. The total number of

slow queries answered in the online epoch is at most 𝜎 . The queries

that exceed this quota are answered with ⊥. On the other hand,

the number of slow queries during the precomputation epoch is

bounded only by the computing time of the adversary (i.e., it is

polynomial in 𝜅). This corresponds to the fact that the adversaries

can have a long “precomputation period” before the protocol starts,

and the MPC execution time is restricted only when the protocol

execution takes place. As in [15], in order to reason about the

information each subadversary submitted to the oracle, we define

the fast-oracle transcript of a subadversary A 𝑗 to be the sequence

T𝑗 of oracle inputs that Ω𝐻 received fromA 𝑗 (in the same order in

which they were received).

Counting the number of slow queries. For the honest parties, the
number of calls to the ΩMPC

𝐻
will be an efficiency parameter #slow.

For the adversary, the number of queries to ΩMPC
𝐻

is bounded by the

adversarial slow query budget parameter 𝜎 . In our constructions,

we will have #slow ≪ 𝜎 , i.e., the number of times the honest parties

need to compute𝐻 inMPCwill bemuch smaller than the bound𝜎 of

such MPC computations of the adversary. In particular, #slow = 𝜅

in the 𝑛-out-of-𝑛 construction, and #slow = 𝑛2 · 𝜅 in the 𝑡-out-

of-𝑛 construction. At the same time, we have that 𝜅 ≥ 2 log
2
𝜎 ,

that is 𝜎 ≤ 2
𝜅/2

, therefore even 𝜎 that is exponential in 𝜅 can be

accommodated.

2.2 Protocol execution
An SSS protocol Π is divided into three phases executed during the

online epoch in the following order.

Sharing phase: In this phase, denoted Π.share, all the parties take
as input 1

𝜅
, and the dealer D additionally takes as input a secret

𝑆 ∈ {0, 1}𝜆 (𝜅) . At the end of this phase, the judge may output error,
in which case, the protocol terminates (and we say that the sharing

failed). Otherwise, he outputs ok and the parties proceed to one of

the next phases. During this phase, the dishonest shareholders may

engage in an illegal reconstruction of a secret.

Punishment phase (of P𝑖 snitched by A 𝑗): This phase is executed

between the dealer D and the judge J. It is denoted Π.punish
A 𝑗⇝P𝑖
⊕

and is parametrized by a sub-adversaryA 𝑗 (called a snitcher) and a
shareholder P𝑖 (called a target) who does not belong to A 𝑗 ’s coali-

tion C𝑗 . The dealer D receives the fast-oracle transcript T fast
𝑗

of the

subadversary A 𝑗 (which may be empty if the parties in A 𝑗 ’s coali-

tion did not compute any hashes) and may send a message to the

judge J. At the end of this phase, the judge outputs (punished, P𝑖)
(where P𝑖 is the target) or ⊥. Note that the snitcher A 𝑗 does not

explicitly participate in this phase. This is just a formal abstraction:

in practice, it would be A 𝑗 who would deliver T fast
𝑗

to the judge.

Reconstruction phase: This phase is denoted Π.reconstruct and is

executed between a set of shareholders of size 𝑡 (the dealer D and

the judge J do not participate in this phase). At the end of it, the

participating parties output 𝑆 ∈ {0, 1}∗ ∪ {⊥}.

2.3 SSS properties
An SSS protocol should satisfy three requirements: correctness,

punishability, and unframability that we describe below. They were

introduced informally already in Sect. 1. Below, we define them

more formally.

Correctness. The correctness requirement is standard and states

that if all the parties are honest, then for every input 𝑆 ∈ {0, 1}𝜆 (𝜅)
with overwhelming (in 𝜅) probabilitythe output 𝑆 of each honest

party in the reconstruction phase is equal to 𝑆 .

Punishability. The punishability property guarantees that if the

shareholders engage in an illegal secret reconstruction protocol,

then there exists a target P𝑖 and a snitcher A 𝑗 , (with P𝑖 ∉ C𝑗),
such thatA 𝑗 can collaborate with the dealer D (as remarked above,

technically, this means that the dealer simply receives the transcript

T fast
𝑗

ofA 𝑗) to generate a proof for the judge that will convince her

to punish P𝑖 . The probability that the punishment procedure works

depends on the amount of information that the shareholders obtain

about the shared secret measured in terms of the “distinguishing

advantage”. Thanks to this approach, if the malicious parties decide

to illegally reconstruct the secret only with some probability 𝑝 (and

with probability 1 − 𝑝 they behave honestly), then the punishment

happens with probability close to 𝑝 .

More formally, letA = (A1, . . . ,A𝑎) be an arbitrary distributed

adversary and define

AdvJA ⇆ Π;𝜅K := | Pr
[
SharingJA ⇆ Π, 0;𝜅K = 1

]
− (1)

Pr

[
SharingJA ⇆ Π, 1;𝜅K = 1

]
| (2)

and let 𝑆 be an arbitrary secret of length 𝜆(𝜅). Consider an execution
of A against Π with security parameter 1

𝜅
and the dealer’s secret

𝑆 , as defined in the SnitchingJ𝑆,A ⇆ Π;𝜅K experiment (cf. Fig. 2).

Define the following event:

PunishedJA, 𝑆 ;𝜅K := after the sharing phase, there exists

a target P𝑖 and a snitcher A 𝑗 such that

SnitchingJ𝑆, 𝑖, 𝑗,A ⇆ Π;𝜅K = (punished, P𝑖) .
(3)

Then for all 𝑆 ∈ {0, 1}𝜆 (𝜅) we have thatAdvJA ⇆ Π;𝜅K−negl(𝜅) ≤
Pr

[
PunishedJA, 𝑆 ;𝜅K

]
.

Unframability. The unframability property guarantees every hon-

est shareholder P𝑖∗ , that even if the dealer and all the remaining

shareholders maliciously collaborate, they cannot frame P𝑖∗ , i.e.,
with overwhelming probability they cannot trick the judge J into
outputting a punishment message against P𝑖∗ . More formally, for

every 𝑖∗ ∈ {1, . . . , 𝑛}, every monolithic adversary M that does

not corrupt P𝑖∗ we have that in every execution ofM against Π

Secret Sharing with Snitching CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Experiment SharingJA ⇆ Π, 𝑏;𝜅K

1. A pre-computation epoch is executed. During it, the subad-

versaries can submit an arbitrary number of slow queries

to Ω𝐻 .

2. A selects two secrets 𝑆0, 𝑆1 ∈ {0, 1}𝜆 (𝜅) .
3. The sharing phase of Π is executed with the security pa-

rameter 1
𝜅
and 𝑆 = 𝑆𝑏 . During this phase, the distributed

adversary A attacks the protocol Π and possibly tries to

obtain some information about the shared secret.

4. The output of the experiment is equal to the output of A.

Experiment SnitchingJ𝑆, 𝑖, 𝑗,A ⇆ Π;𝜅K

1. A pre-computation epoch is executed. During it, the subad-

versaries can submit an arbitrary number of slow queries

to Ω𝐻 .

2. The sharing phase of Π is executed with the security pa-

rameter 1
𝜅
and 𝑆 being the dealer’s secret. During this

phase, A attacks the protocol Π.
3. The punishment phase of P𝑖 snitched by A 𝑗 is executed.

4. The output of the experiment is defined to be the output

of the judge J in Π at the end of the punishment phase.

Figure 2: The experiment SnitchingJ𝑆,A ⇆ Π;𝜅K.

on security parameter 𝜅, and every 𝑆 ∈ {0, 1}𝜆 (𝜅) we have that

Pr[J outputs (punished, P𝑖∗) in the punishment phase] ≤ negl(𝜅) .
Note that the assumption thatM is monolithic only makes this

requirement stronger, since this means that we do not impose any

restrictions on how the hashes 𝐻 are computed by the adversary.

2.4 Remarks on the definition
2.4.1 Comparison to Dziembowski et al. Our model is similar to the

one of [15] in the sense that we also consider distributed adversaries

that consist of “subadversaries”. We also have two types of oracle

queries: the expensive (“slow”) ones, corresponding to the queries

evaluated in MPC, and the cheap (“fast”) ones that are computed

individually by the subadversaries. The authors of [15] do not have

the multi-party random oracle ΩMPC
𝐻

since they do not need to

model the access to the random oracle Ω𝐻 from within an MPC

protocol executed by the honest parties. From the security model

point of view, this is mostly a syntactic difference. In [15], the

authors also construct a secret sharing scheme called “individual

secret sharing” (ISS), whose main distinguishing feature is that the

reconstruction of a secret has to be performed individually. The

main difference between ISS and SSS is that ISS does not have a

punishment mechanism, particularly one that would prevent the

framing of honest parties.

2.4.2 On the length of 𝑆 . Our definition considers only SSS where

the secrets are of fixed length. This technical requirement is needed

to guarantee that 𝑆 (used in the punishment experiment) has the

same length as 𝑆0 and 𝑆1 chosen by A in the indistinguishability

experiment. Since we want the snitching to work for any 𝑆 , if we

had not put any restriction on |𝑆 |, we would get to a definition that

is impossible to satisfy, as the adversary’s actions may depend on

the length of the shared secret (which, in general, is impossible to

hide from him).

2.4.3 The timeframe of punishment. Note that the fraud proofs are

inherently meaningless anytime following a legal reconstruction.

However, we do not impose any requirements on when the snitch-

ing has to happen, and it is up to the protocol designer to guarantee

that the fraud proof is sent to the judge while the reconstruction is

still considered illegal. Since the judge can be thought of as a smart

contract, the timeframe can be a part of its public state and set in a

trustless manner upon deployment.

2.4.4 The target in the punishment phase. In our definition of pun-

ishability, we only assume that there exists a party that one can

snitch on. In other words, we do not assume how the snitching

target is chosen, and this is left as an implementation detail. The

actual algorithm for choosing the party being punished may vary

depending on the desired guarantees and incentives. One might

want to punish only a single shareholder or, in other cases, every

shareholder but the snitcher. The bottom line is that the threat of

punishment should discourage dishonest behavior, and the honest

parties will not be punished.

2.4.5 Adaptivity in choosing the snitcher. Additionally, our defini-
tion of punishability allows for an adaptive choice of the snitcher.
One could consider a non-adaptive model, in which the snitcher

is chosen upfront before the execution of the protocol. Note that

the non-adaptive choice of the snitcher would ensure stronger se-
curity guarantees, unlike in the case of adaptive corruption in

multi-party protocols. A non-adaptive choice would correspond

to an undercover agent being planted in a criminal group by the

law enforcement, whereas our adaptive model corresponds to a

criminal acting as a crown witness for incentives of any sort. Below,

we explain why the non-adaptive model has some limitations.

First of all, it might turn out that every party involved in the

scheme has a small chance of being able to snitch. As an example,

consider an execution of the SSS protocol where each party P𝑖
is corrupted by a different subadversary A𝑖 . The parties pick a

leader L ∈ {P1, . . . , P𝑛} uniformly at random and send all their

data to the leader. Then the leader is the only one who can snitch,

and every party can snitch with probability 1/𝑛, even though the

distinguishing advantage ofA equals 1. Moreover, a non-adaptively

chosen party might not be able to snitch at all. Consider a variant

of the example above, in which the leader L is a fixed party. Then,

every party P𝑖 ≠ L can snitch with probability 0. Last but not least,

the adaptive model is enough for most applications of our protocol,

as one should be able to provide incentives for the snitchers. One

could, for instance, incentivize the snitching party by offering a

part of the dishonest parties’ deposit. A detailed study of possible

cryptoeconomic incentives is, however, out of the scope of this

paper.

2.4.6 Punishability and unframability implies secrecy. Note that the
above definition does not contain any explicit secrecy requirement.

We now informally argue that secrecy (against a group of at most 𝑡−
1malicious shareholders) is already implied by the other properties,

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

namely by the unframability and the punishability. For the sake of
contradiction, suppose that a group C (such that |C| ≤ 𝑡 − 1) of the
shareholders gets enough information during the sharing procedure

to win the distinguishing game with a non-negligible advantage 𝜀

(see Eq. (1) on Fig. 2). In other words, for a distributed adversary

A 𝑗 corrupting coalition C, we have that AdvJA ⇆ Π;𝜅K = 𝜀.

Punishability implies that Pr

[
PunishedJA, 𝑆 ;𝜅K

]
≥ 𝜀−negl(𝜅) and

the right-hand side is non-negligible. Suppose all the parties not in

C remain honest (but curious). By the unframability of the protocol,

they cannot be punished. So, the only parties that can be punished

are members of C. The only non-trivial fast hash transcript is the

one ofA 𝑗 , soA 𝑗 is the only possible snitcher. But we require that a

subadversary never snitches on her coalition members. This yields

a contradiction.

2.4.7 Verifiable SSS. To simplify the exposition and clearly present

our main idea, we decided not to overload our definition with

security requirements. Hence, we do not consider other properties

commonly required from secret sharing, such as verifiability. Our

definitions and both our schemes do not account for the guarantees

of Verifiable Secret Sharing [10]. We consider the detailed analysis

to be out of the scope of the paper, and we will thus not provide any

formal definitions. However, we will sketch how one can extend

the protocol to provide Verifiable Secret Sharing with Snitching.

Recall that in the VSS, one needs to take into account that (1) the

dishonest dealer might send inconsistent shares to the shareholders

(e.g., shares that are not evaluations of a polynomial of degree

𝑡), and (2) the malicious shareholders can lie about their shares,

preventing the reconstruction of 𝑆 (even if the dealer was honest).

These problems can be addressed using zero-knowledge (ZK)

techniques, especially their non-interactive versions, like zk-SNARKS.

Observe that the sharing procedure requires a small number of hash

computations (massive computations of 𝐻 are present only in the

reconstruction phase). Hence, we can instruct the dealer to prove

in ZK to all the shareholders that the shares he shared are consis-

tent (in particular, in the threshold case: that they interpolate a

polynomial of degree 𝑡). Moreover, the dealer can sign every share

(note that this would require using MPCs, since the shares are not

known to the dealer) to prevent the problem of lying shareholders.

We leave formalizing these solutions and finding more efficient and

practical alternatives as future work.

3 The 𝑛-out-of-𝑛 SSS scheme
In this section, we will introduce a construction for secret sharing

with snitching, where the dealer distributes shares to 𝑛 parties and

all 𝑛 parties are needed for reconstructing the secret. In Sections 3-

4, we use the following conventions. For a security parameter 𝜅,

define 𝐺 : {0, 1}𝜅 → {0, 1}𝜆 (𝜅) as 𝐺 (𝑋) := 𝐻 (“0” | | 𝑋) | | . . . | | 𝐻
(“⌈𝜆(𝜅)/𝜅⌉” | | 𝑋) ,where “𝑘” denotes the binary representation of a

natural number (of length 𝜅) and the last block (𝐻 (“⌈𝜆(𝜅)/𝜅⌉” | |𝑋))
is truncated to make |𝐺 (𝑋) | = 𝜆(𝜅). We also use the following

convention: for input 𝑋 such that |𝑋 | < {0, 1}2𝜅 by writing 𝐻 (𝑋)
we mean 𝐻

(
𝑋 | | 02𝜅−|𝑋 |

)
. We will assume that 𝜆(𝜅) ≤ 𝜅2𝜅 so that

this definition is well-formed.

3.1 Our construction
Our 𝑛-out-of-𝑛 scheme Π⊕ consists of three phases: Π.share⊕ ,

Π.punish
A 𝑗⇝P𝑖
⊕ and Π.reconstruct⊕ , presented on Figs. 3 to 5. Our

construction uses an integer parameter 𝑑 :=
⌈
log

2
(𝜎/𝜅)

⌉
+ 4 called

difficulty. During Π.share⊕ the dealer wishes to share a secret 𝑆 ∈

Π.share⊕ between D, P1, . . . , P𝑛 and J

1. All parties take as input 1
𝜅
. Additionally, the dealerD takes

as input a secret 𝑆 ∈ {0, 1}𝜆 (𝜅) .
2. The dealer samples 𝑌 1, . . . , 𝑌𝜅 ←$ {0, 1}𝑑 .
3. Each shareholder P𝑖 samples 𝑋 1

𝑖
, . . . , 𝑋𝜅

𝑖
←$ {0, 1}𝜅 .

4. For ℓ := 1, . . . , 𝜅, all the parties compute, using the multi-

party random oracle, the following values:

𝑍 ℓ
:= 𝐻

(
(𝑋 ℓ

1
⊕ · · · ⊕ 𝑋 ℓ

𝑛) | | 𝑌 ℓ
)
.

If any of the above MPC computations was not successful

for some party, then the party aborts.

5. Each party D, P1, . . . , P𝑛 sends 𝑍 1, . . . , 𝑍𝜅
to the judge J.

6. If the judge J did not receive 𝑍 1, . . . , 𝑍𝜅
from all the parties

or if these messages are not identical, then he outputs error,
and all the parties terminate.

7. Otherwise, the dealer D computes 𝑅 :=

𝐻 (𝑌 1 [1], . . . , 𝑌 ℓ [1]) and sends 𝐶 := 𝐺 (𝑅) ⊕ 𝑆 to

the shareholders P1, . . . , P𝑛 .

Figure 3: The sharing phase of the SSS scheme Π⊕ .

Π.punish
A 𝑗⇝P𝑖
⊕ between D and J

1. The dealer receives the fast-oracle transcript T fast
𝑗

of A 𝑗 .

2. For each query (𝑄 | | 𝑄 ′) ∈ {0, 1}2𝜅 in the transcript

T fast
𝑗

(where |𝑄 | = |𝑄 ′ | = 𝜅), the dealer checks if

𝐻 (𝑄 | | 𝑌 ℓ) = 𝑍 ℓ
(for some ℓ). If yes, then he sends a mes-

sage (punish, 𝑖, 𝑄,𝑌 ℓ , ℓ) to the judge.

3. If indeed 𝐻 (𝑄 | | 𝑌 ℓ) = 𝑍 ℓ
then the judge outputs

(punished, P𝑖).

Figure 4: The punishment of P𝑖 snitched by A 𝑗 in Π⊕ .

{0, 1}𝜆 (𝜅) that can be later reconstructed during Π.reconstruct⊕ .
The main challenge is that if, on one hand, the shareholders attempt

an illegal reconstruction, then at least one of them (the snitcher

A 𝑗) should provide evidence for the dealer that suffices to punish

one of the colluders P𝑖 (recall that technically, the punishment is

done in the Π.punish
A 𝑗⇝P𝑖
⊕ procedure by the dealer who uses the

transcript T fast
𝑗

of A 𝑗 to produce the punishment proof). This is

guaranteed by the punishability property. On the other hand if some

shareholder P𝑖 is honest, then even an adversary that corrupts the

dealer and all the other shareholders should not be able to convince

the judge to punish P𝑖 . This is guaranteed by the unframability

Secret Sharing with Snitching CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

Π.reconstruct⊕ between P1, . . . , P𝑛

1. The shareholders appoint a chair, say P1.
2. Each P𝑖 sends (𝑋 1

𝑖
, . . . , 𝑋𝜅

𝑖
) to the chair P1.

3. For ℓ := 1, . . . , 𝜅, the chair computes 𝑋 ℓ
:= 𝑋 ℓ

1
⊕ · · · ⊕ 𝑋 ℓ

𝑛 .

4. For ℓ := 1, . . . , 𝜅, the chair performs a brute-force search

to find a value 𝑌 ℓ ∈ {0, 1}𝑑 such that 𝐻 (𝑋 ℓ | | 𝑌 ℓ) = 𝑍 ℓ
. If

for some ℓ no such 𝑌 ℓ
is found, then P1 outputs ⊥.

5. The chair computes 𝑅 := 𝐻 (𝑌 1 [1], . . . , 𝑌 ℓ [1]) and sends

𝑆 := 𝐶 ⊕ 𝐺 (𝑅) to all the shareholders.

6. Each shareholder outputs 𝑆 .

Figure 5: The reconstruction phase of the SSS scheme Π⊕ .

property. Let us discuss how these two goals are achieved, starting

with a toy solution, in which the dealer is assumed to be honest,

i.e., the unframability property is trivially achieved.

Recall from the introduction that we need to protect against

MPC attacks. Hence, the first idea is to use an MPC-hard function

that the shareholders have to evaluate in order to reconstruct the

secret 𝑆 . MPC-hardness here means that to evaluate the MPC-hard

function, the shareholders have to carry out a large number of hash

evaluations, which cannot be done efficiently via an MPC protocol.

In our solution, the MPC-hard function consists of finding a partial

preimage of a hash function, i.e., for some random 𝑋 ∈ {0, 1}𝜅 find

𝑌 ∈ {0, 1}𝑑 such that 𝐻 (𝑋 | | 𝑌) = 𝑍 . Given such an MPC-hard

function, our toy solution proceeds as follows. First, the dealer

samples 𝑋1, . . . 𝑋𝑛 ←$ {0, 1}𝜅 and 𝑌 ←$ {0, 1}𝑑 . Then it computes

𝑍 := 𝐻 (𝑋1 ⊕ . . . ⊕ 𝑋𝑛 | | 𝑌) and the “ciphertext” 𝐶 := 𝐺 (𝑋1 ⊕ . . . ⊕
𝑋𝑛 | | 𝑌) ⊕ 𝑆 .5 Finally, it sends (𝑋𝑖 ,𝐶) to each shareholder P𝑖 and

𝑍 to the judge. During the snitching phase Π.punish
A 𝑗⇝P𝑖
⊕ , the

judge will accept a fraud proof against some shareholder P𝑖 if it
receives some preimage of 𝑍 .

It is easy to see that in our toy solution, the shareholders can

reconstruct 𝑆 by computing𝑋 := 𝑋1 ⊕ . . .⊕𝑋𝑛 and then letting one

of the shareholders (called the chair) solve the MPC-hard function

by finding 𝑌 such that 𝐻 (𝑋 | | 𝑌) = 𝑍 . Hence, correctness of the
scheme is satisfied. Let us next take a look at the punishability
property. Since the distributed adversary only has a limited budget

of queries to themulti-party random oracle, there are only twoways

to compute 𝑌 and recover 𝑆 . First, the adversary may get lucky and

manage to invert 𝐻 using slow queries only, that is, use the correct

value of 𝑌 when evaluating 𝐻 (𝑋 | | 𝑌) via the multi-party random

oracle. Since the corresponding query is slow, the adversary cannot

be punished, thus breaking the punishability property. While in our

toy solution, this “bad case” may indeed happen with noticeable

probability, it can easily be addressed by increasing the number of

hashes to invert (see the discussion below). Second, the adversary

may ask one of the subadversariesA 𝑗 to reconstruct𝑋 individually

and then find 𝑌 using fast queries to the hash oracle Ω𝐻 . But

in this case, A 𝑗 knows (𝑋,𝑌) such that 𝐻 (𝑋 | | 𝑌) = 𝑍 and can

send a valid fraud proof to the judge. Thus, except for the “bad

5
The input “𝑋1 ⊕ . . . ⊕ 𝑋𝑛” is added to𝐺 avoid reconstructing 𝑆 by simply finding

𝑌 ∈ {0, 1}𝑑 by brute force.

case” mentioned above, if the corrupted shareholders attempt to

learn any information about 𝑌 , then there must always exist one

party that can send a fraud proof to the judge. This implies our

punishability property. The above toy solution has a fundamental

drawback. Since the dealer knows the pair (𝑋,𝑌), it can easily

frame any honest shareholder, thus breaking the unframability
property. In order to address this issue, we proceed as follows.

Instead of letting the dealer choose 𝑋1, . . . , 𝑋𝑛 ←$ {0, 1}𝜅 on its

own, we let each shareholder choose 𝑋𝑖 themselves and ask the

parties to jointly compute 𝑍 := 𝐻 (𝑋1 ⊕ . . . ⊕ 𝑋𝑛 | | 𝑌) via the

multi-party random oracle.
6
Since 𝑋1 ⊕ . . . ⊕𝑋𝑛 is unknown to any

adversary who corrupts the dealer and all but one shareholder, the

adversary cannot punish any honest shareholder, thus guaranteeing

the unframability property.

Finally, let us discuss how we deal with the “bad case” mentioned

above. Because of our choice of parameters, the adversary may get

lucky and evaluate𝐻 (𝑋 | |𝑌) for the correct 𝑌 using the multi-party

random oracle. This would break the punishability property as now

no individual shareholder knows 𝑌 . In order to address this issue,

we essentially repeat the above protocol 𝜅 times and accept any of

the preimages as a fraud proof. More precisely, each shareholder P𝑖
chooses 𝜅 values 𝑋 ℓ

𝑖
, and the dealer chooses 𝜅 values 𝑌 ℓ

. Next, the

parties compute the 𝑍 ℓ
:= 𝐻 (𝑋 ℓ

1
⊕ . . . ⊕ 𝑋 ℓ

𝑛 | | 𝑌 ℓ) using the multi-

party random oracle and send the 𝑍ℓ values to the judge. Since

now we have multiple 𝑌 ℓ
’s, we can simply let the input of 𝐺 be

their xor, and hence adding “𝑋1 ⊕ · · · ⊕ 𝑋𝑛” to the input of𝐺 is not

needed (cf. Footnote 5). Snitching works if any of the shareholders

sends a preimage for any of the 𝑍 ℓ
. This concludes the high-level

description of our protocol. We notice that on a technical level,

the analysis is a bit more delicate as we have to ensure that when

the colluding parties learn only some (partial) information about

𝑆 with some probability 𝑝 , then with the same probability there is

one party that can snitch on any of the colluders. We now proceed

with the formal proof.

3.2 Security Analysis
In this section, we provide a security analysis of our scheme by

proving the following theorem.

Theorem 3.1. Let 𝜎 be a function of𝜅 such that𝜅 ≥ 2 log
2
𝜎 . Then

the scheme Π⊕ (constructed on Figs. 3 to 5) with 𝑑 :=
⌈
log

2
(𝜎/𝜅)

⌉
+ 4

is a secure 𝑛-out-of-𝑛 SSS scheme with a slow query budget 𝜎 .

Proof. In order to prove the theorem, we need to argue that Π⊕
is correct, punishable, and unframable. This is done below.

3.2.1 Correctness. Suppose that all the parties are honest. This

implies that all the input variables𝐶, 𝑅,𝑋 ℓ
𝑖
, for 𝑖 ∈ [𝑛], 𝑗 ∈ [𝜅] used

in the reconstruction algorithm were computed according to the

instructions in the sharing algorithm. Thus, all the values 𝑋 ℓ
in

Step 3 of the reconstruction algorithm are correct. We only need to

show that the values𝑌 ℓ
computed in the Step 4 of the reconstruction

procedure are computed correctly. For a fixed ℓ ∈ [𝜅], consider
the function ℎℓ : {0, 1}𝑑 → {0, 1}𝜅 : 𝑦 ↦→ 𝐻 (𝑋 ℓ | | 𝑦) . In the random

oracle model, we have that Pr𝑦

[
ℎℓ (𝑦) = 𝑍 ℓ

]
= 1/2𝜅 . Therefore,

6
Notice that this is possible in our model because we allow the honest parties to make

a small number of hash function evaluations in MPC. In practice, this means that the

multi-party random oracle is realized via a suitable MPC protocol.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

there are no collisions of ℎℓ at 𝑍
ℓ
with probability equal to (1 −

1/2𝜅)2𝑑−1. By Bernoulli’s inequality, we have that (1 − 1/2𝜅)2𝑑 ≥
1 − 2

𝑑/2𝜅 , which is overwhelming as long as 2
𝑑−𝜅 = negl(𝜅),

which is clearly the case given that 𝑑 =
⌈
log

2
𝜎 − log

2
𝜅
⌉
+ 2 and

log
2
𝜎 < 𝜅/2. In order to account for all ℓ , we apply the union

bound and the probability remains negligible.

3.2.2 Punishability. Fix some distributed adversaryA. In this part

of the proof we show that

AdvJA ⇆ Π⊕ ;𝜅K − negl(𝜅) ≤ Pr

[
PunishedJA, 𝑆 ;𝜅K

]
. (4)

First, consider the SharingJA ⇆ Π, 𝑏;𝜅K experiment. For each ℓ ,

let 𝑌 ℓ [𝑖] denote the 𝑖-th bit of 𝑌 ℓ
and let Broken⊕ denote the event

that the adversary submitted to Ω𝐻 a query (𝑌 1 [1], . . . , 𝑌𝜅 [1]).
From the properties of the random oracle, it follows that as long

as Broken⊕ did not occur, from the adversary’s point of view, the

value of 𝑅 is completely uniform, and hence𝐶 = 𝐺 (𝑅) ⊕ 𝑆 perfectly

hides 𝑆 . Therefore, we have

AdvJA ⇆ Π⊕ ;𝜅K ≤ Pr[Broken⊕] . (5)

Now consider the SnitchingJ𝑆,A ⇆ Π⊕ ;𝜅K experiment. We now

show the following upper bound on Pr[Broken⊕] in this experi-

ment:

Pr[Broken⊕] ≤ Pr

[
PunishedJA, 𝑆 ;𝜅K

]
+ negl(𝜅) . (6)

Observe that as long as Broken⊕ did not occur, the Snitching exper-

iment does not depend on the choice of 𝑆 , and hence the probability

of Broken⊕ in the Sharing and in the Snitching experiments are

equal, hence (5) and (6) will together imply (4). Thus, what remains

to show is Eq. (6).

The proof of Eq. (6). Let us first introduce some notation. Re-

call that the queries to the oracle have a form (𝑄,mode), where
𝑄 ∈ {0, 1}2𝜅 and mode ∈ {fast, slow}. We will consider two dif-

ferent types of queries to the oracle Ω𝐻 . First, we call a query a

scratch (for ℓ) if it has the form ((𝑋 ℓ | | ·), ·) (where “·” denotes an
arbitrary value). Second, we call a query successful if it has the form
((𝑋 ℓ | | 𝑌 ℓ), ·) such that 𝐻 (𝑋 ℓ | | 𝑌 ℓ) = 𝑍 ℓ

. To simplify our analysis,

we introduce the following bad events. (1) bad1 := “a scratch query

for some ℓ was submitted to Ω𝐻 during the pre-computation phase”;

(2) bad2 := “there exist two distinct indices ℓ, ℓ′ ∈ {1, . . . , 𝜅} such
that 𝑋 ℓ = 𝑋 ℓ ′

"; (3) bad3 := “an adversary and the honest parties

found a collision in 𝐻 , i.e., during the execution of the protocol,

two different queries sent to Ω𝐻 resulted in the same output.” Let

us analyze the probability that bad𝑖 happens. For bad1 observe that
𝑋 ℓ

values are chosen uniformly at random from {0, 1}𝜅 , and hence

it can be guessed correctly with probability at most 2
−𝜅

. For this

reason, the probability that a poly-time adversary submits𝑋 ℓ
to Ωℎ

during the pre-computation phase is negligible in𝜅 . Regarding bad2
observe that if bad2 does not happen then a given query can be a

scratch for at most one ℓ . It is clear that for any ℓ ≠ ℓ′ the probabil-
ity that 𝑋 ℓ = 𝑋 ℓ ′

is negligible in 𝜅 and hence Pr[bad2] ≤ negl(𝜅).
Finally, the probability Pr[bad3] is negligible in 𝜅 because of the

collision resistance of the random oracle. Define bad :=
⋃

𝑖 bad𝑖 .
By union bound we have Pr[bad] ≤ negl(𝜅). Hence, without loss
of generality, in the rest of the analysis, we assume that bad did

not occur. We now show the following technical claim:

Claim 1. Suppose the adversary made at most 𝜅 · 2𝑑−4 scratch
queries to the oracle. Then, the probability that at least 3𝜅/4 queries
are successful is negligible in 𝜅.

Proof. Suppose that the adversary made at least 3𝜅/4 successful
queries. Since 𝐻 was computed by the multi-party random oracle,

thus, the adversary has no information about the 𝑌 ℓ
. Moreover,

since𝐻 is a random function, thus without loss of generality we can

assume thatA submits to the oracle scratches in a fixed order. Say:

for every𝑋 ℓ
she submits them in order (𝑋 ℓ | |“0”), (𝑋 ℓ | |“1”), . . . , (𝑋 ℓ

| | “2𝑑 ”) (where “𝑚” denotes the binary representation of 𝑚 of

length 𝑑).

Let L ⊆ [ℓ] be the set of indices such that 𝑌 ℓ
is a binary rep-

resentation of a number that is less than 2
𝑑−2

, i.e., those ℓ where

the adversary is “lucky” in the sense that she will find 𝑌 ℓ
with at

most 2
𝑑−2

scratches. Since we assumed that bad2 did not occur,

thus the sets of scratches for each index ℓ are pairwise disjoint. For

every ℓ ∈ L, the adversary can be lucky and get a successful query

already for one scratch. On the other hand, for every ℓ ∉ L the

adversary needs to make at least 2
𝑑−2

scratches in order to have a

successful query. Since the total number of successful queries is at

least 3𝜅/4, thus the total number of scratches is at least

|L| · 1 + (3𝜅/4 − |L|) · 2𝑑−2

≥ (3𝜅/4 − |L|) · 2𝑑−2 . (7)

On the other hand, we assumed that the number of scratches is at

most 𝜅 · 2𝑑−4. We hence get that Eq. (7) is at most 𝜅 · 2𝑑−4, which
can be rearanged to

|L| ≥ 𝜅/2. (8)

Since we assumed that the event bad3 holds, thus there are no

collions in the hash function, and therefore for each ℓ the probability

that ℓ ∈ L is exactly equal to 1/4 and these events are independent.7
Let 𝑆ℓ be a binary variable equal to 1 iff and only if ℓ ∈ L. Clearly
|L| = ∑

ℓ 𝑆ℓ , and by the Chernoff bound
8
we get the following

bound on Eq. (8):

Pr[|L| ≥ 𝜅/2] ≤ exp(−𝜅/8) = negl(𝜅) .

This finishes the proof of the claim. □

We now go back to the proof of punishability. Let G be the event

that at least 3𝜅/4 queries are successful, and letH be the event that

there was no fast scratch query. We are interested in the joint event

G ∧ H . This is the event that the adversary makes at least 3𝜅/4
successful queries, and all of them are done via slow queries. Since

we defined the difficulty as 𝑑 :=
⌈
log

2
(𝜎/𝜅)

⌉
+ 4, hence 𝜎 ≤ 𝜅 · 2𝑑−4.

Thus, using the assumption that bad1 did not occur (i.e. no slow

scratch query was submitted in the pre-computation phase), and

the claim from above, we obtain:

Pr[G andH] ≤ negl(𝜅). (9)

It is easy to see that if less than 3𝜅/4 queries were successful, then
the probability that the adversary guesses the entire (𝑌 1 [1], . . . ,
7
Recall that the order in which the adversary makes is fixed and hence the probability

that the adversary “hits” the value 𝑌 ℓ
in her first 2

𝑑−2
queries is 1/4.

8
We use the following version of this bound (see, e.g., [27, Theorem 4.5]). Suppose

that the 𝑋𝑖 are independent random values taking values in {0, 1}, let 𝑋 =
∑

𝑖 𝑋𝑖 ,

𝜇 = E[𝑋]. Then for any 𝛿 > 0 it holds that Pr[𝑋 ≥ (1 + 𝛿)𝜇] ≤ 𝑒−𝛿
2𝜇/2 .

Secret Sharing with Snitching CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

𝑌𝜅 [1]) correctly is negligible in 𝜅, and hence

Pr[¬G and Broken⊕] ≤ negl(𝜅) . (10)

Combining (9) and (10) we obtain Pr[H and Broken⊕] ≤ negl(𝜅),
and consequently Pr[Broken⊕] ≤ Pr[¬H] + negl(𝜅) . On the other

hand, ifH did not occur, then there was at least one fast scratch

query, i.e., query starting with 𝑋 ℓ
(for some ℓ). Since 𝐻 (𝑋 ℓ | | 𝑌 ℓ) =

𝑍 ℓ
, thus in the punishing phase, the party who made that query

has 𝑋 ℓ | | 𝑌 ℓ
in her fast transcript, and consequently (if she is the

snitcher), then the dealer sends (punish, 𝑖, 𝑋 ℓ , 𝑌 ℓ , ℓ) to the judge.

Note that, since we assumed that bad3 did not occur, thus there are
collisions among the 𝑍 ℓ

, so the party can infer ℓ from 𝑍 ℓ
. The judge,

in turn, accepts this message and outputs (punished, P𝑖). Therefore,
(6) (and consequently (4)) is proven.

3.2.3 Unframability. Recall that, for a fixed honest shareholder P𝑖∗ ,
the “punish” message submitted to the judge J by the dealer D, nec-
essary to frame the shareholder P𝑖∗ , is a string𝑄 ∈ {0, 1}𝜅 such that

𝐻 (𝑄 | |𝑌 ℓ) = 𝑍 ℓ
for some ℓ = 1, . . . , 𝜅 . Recall that𝑍 ℓ

is computed us-

ing amulti-party randomoracle as𝑍 ℓ
:= 𝐻

(
(𝑋 ℓ

1
⊕ · · · ⊕ 𝑋 ℓ

𝑛) | | 𝑌 ℓ
)
.

Since the 𝑋𝑖∗ is chosen at random by P𝑖∗ , thus 𝑋 ℓ
:= 𝑋 ℓ

1
⊕ · · · ⊕ 𝑋 ℓ

𝑛

is uniformly random. Moreover, since 𝑍ℓ is computed using the

multi-party random oracle, thus 𝑋 ℓ
is uniformly random from the

point of the adversary. Therefore, his probability of guessing any

𝑄 such that 𝐻 (𝑄 | | 𝑌 ℓ) = 𝑍 ℓ
is negligible in 𝜅. □

3.3 Discussion
3.3.1 Efficiency analysis. In our analysis, we focus on the number

of slow and fast queries to Ω𝐻 as our main measure of efficiency.

Unlike the previous work on Individual Cryptography [15], our

scheme assumes that the honest parties can compute a few hashes

in MPC while still relying on the hardness of computing hashes in

MPC for the proof of security. In the sharing phase, the number

of slow queries made by the parties is 𝜅; Additionally, the dealer

makes an extra fast query. The reconstruction procedure requires

an expected 𝜅2𝑑−1 queries to Ω𝐻 , which will be fast in the case of

the honest chair in the reconstruction procedure and slow in the

case of a distributed adversary, as even a single fast scratch attempt

would already render the adversary punishable. This means that

the ratio between the number of queries that must be computed by

the distributed adversary and the parameter #slow in the honest

execution is roughly 2
𝑑−1 ≈ 2

log
2
𝜎−log

2
𝜅+3 = 8𝜎/𝜅. If we take

𝜅 = 2 log
2
𝜎 (cf. the statement of Theorem 3.1), we obtain the ratio

to be 4𝜎/log
2
𝜎 . Finally, let us notice, that the judge requires only a

single query to the oracle for verification of the fraud proof.

Sincewe do not consider the randomness necessary to implement

a multi-party random oracle, it is easy to see that each shareholder

requires 𝜅2 random bits and the dealer needs 𝜅𝑑 random bits, which

is the randomness complexity of the protocol. It is also easy to see

that the size of the output is Θ(𝜅2) per party.

4 The 𝑡-out-of-𝑛 SSS scheme
In this section, we construct a 𝑡-out-of-𝑛 SSS scheme (for any 𝑡 ≤ 𝑛)

from the 2-out-of-2 SSS scheme Π⊕ constructed in the previous

section (we assume that Π⊕ works for secrets of length 𝜅) and a

𝑡-out-of-𝑛 Shamir’s secret sharing scheme

(
shareShamir

(𝑡,𝑛) , recShamir
(𝑡,𝑛)

)
.

By (P𝛼 , P𝛽)-instance of Π⊕ we mean an instance of Π⊕ with P𝛼
and P𝛽 taking the roles of the shareholders P1 and P2, respectively.

The judge in such an instance is denoted J𝛽𝛼 .

4.1 Our construction
Similarly to the 𝑛-out-of-𝑛 case, our 𝑡-out-of-𝑛 scheme Π (𝑡,𝑛) con-

sists of phases:Π.share(𝑡,𝑛) ,Π.punish
A 𝑗⇝P𝛾
(𝑡,𝑛) , andΠ.reconstruct(𝑡,𝑛) ,

presented on Figs. 6 to 8. The main idea behind this construction is

Π.share(𝑡,𝑛) between D, P1, . . . , P𝑛 and J

1. All parties take as input 1
𝜅
. Additionally, the dealerD takes

as input a secret 𝑆 ∈ {0, 1}𝜆 (𝜅) .
2. The dealer samples a random 𝑅 ←$ {0, 1}𝜅 .
3. The dealer D runs a Shamir secret sharing procedure

(𝑆1, . . . , 𝑆𝑛) ←$ shareShamir
(𝑡,𝑛) (𝑅).

4. For 𝛼 := 1 to 𝑛:

(1) The dealer D runs a 𝑡-out-of-𝑛 Shamir secret sharing

procedure (𝑆1𝛼 , . . . , 𝑆𝑛𝛼) ←$ shareShamir
(𝑡,𝑛) (𝑆𝛼).

(2) For 𝛽 := 1 to 𝑛 the parties D, J, P𝛼 , and P𝛽 run

the (P𝛼 , P𝛽)-instance of Π⊕ , that is, they execute the

Π.share⊕ phase with P𝛼 and P𝛽 taking the roles of the

shareholders P1 and P2, respectively, J taking the role

of the judge, D taking the role of the dealer with secret

input 𝑆
𝛽
𝛼 . We will also denote the judge corresponding

to the (P𝛼 , P𝛽)-instance (who is being run by J as a sub-

procedure) as J𝛽𝛼 .
5. If any of the Π.share⊕ procedures above failed, then the

dealer outputs error and the protocol terminates.

6. Otherwise, the dealer D sends 𝐶 := 𝐺 (𝑅) ⊕ 𝑆 to the share-

holders P1, . . . , P𝑛 .

Figure 6: The sharing phase of the SSS scheme Π (𝑡,𝑛) .

as follows. Just as in the 𝑛-out-of-𝑛 scheme, the dealer first shares a

random secret 𝑅 with the shareholders and then uses it to encrypt

the message 𝑋 using the pad 𝐺 (𝑅).
Naively, one could attempt to simply run a 𝑡-out-of-𝑛 sharing

on 𝑅, obtaining the shares 𝑅1, . . . , 𝑅𝑛 and then share both 𝑅𝑖 and

𝑅 𝑗 between P𝑖 and P𝑗 using the 2-out-of-2 sharing Π.share⊕ for

each 𝑖, 𝑗 ∈ [𝑛]. However, this does not provide protection against

coalitions of size as low as 2, since every party only needs to contact

one party to recover its share. Once the shares have been recovered,

𝑡 parties can easily collude to recover the secret 𝑅 without risking

to get punished. Therefore, we add another layer of secret sharing

to ensure that every party has to reconstruct at least 𝑡 − 1 instances
of Π⊕ . Under the assumption that each coalition is of size less than

𝑡 , this implies that an adversary will have to reconstruct at least

𝑡 instances of Π⊕ between the shareholders who do not share a

coalition.

In our solution, each pair (P𝛼 , P𝛽) of shareholders executes an
instance of Π⊕ twice: once P𝛼 and P𝛽 playing the roles of P1 and
P2 (respectively), and the second time with the roles reversed. The

punishment procedure (in Fig. 7) takes this into account by running

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

Π.punish
A 𝑗⇝P𝛾
(𝑡,𝑛) between D and J

1. The dealer receives the fast-oracle transcript T fast
𝑗

of A 𝑗 .

2. For each 𝛼 ∈ {1, . . . , 𝑛} the following is executed:
(1) The dealer runs the Π.punish⊕ procedure of P𝑖 in the

(P𝛼 , P𝛾)-instance on transcript T fast
𝑗

. If this subpro-

cedure produces a message (punish, 2, 𝑄,𝑌 ℓ , ℓ) to the

judge, then the dealer sends (punish, 𝛼,𝛾, 2, 𝑄,𝑌 ℓ , ℓ) to
the judge J.

(2) For each message (punish, 𝛼,𝛾, 2, 𝑄,𝑌 ℓ , ℓ) received from
the dealer, the judge J sends (punish, 2, 𝑄,𝑌 ℓ , ℓ) to J𝛾𝛼 .

(3) If J𝛾𝛼 outputs (punished, P2), then J outputs

(punished, P𝛾).
3. Symmetrically, for each 𝛽 ∈ {1, . . . , 𝑛} the following is

executed:

(1) The dealer runs the Π.punish⊕ procedure of P𝑖 in the

(P𝛾 , P𝛽)-instance on transcript T fast
𝑗

. If this subpro-

cedure produces a message (punish, 1, 𝑄,𝑌 ℓ , ℓ) to the

judge, then the dealer sends (punish, 𝛾, 𝛽, 1, 𝑄,𝑌 ℓ , ℓ) to
the judge J.

(2) For each message (punish, 𝛾, 𝛽, 1, 𝑄,𝑌 ℓ , ℓ) received from
the dealer, the judge J sends (punish, 1, 𝑄,𝑌 ℓ , ℓ) to J𝛽𝛾 .

(3) If J𝛽𝛾 outputs (punished, P1), then J outputs

(punished, P𝛾).

Figure 7: The punishment of P𝛾 snitched by A 𝑗 in Π (𝑡,𝑛) .

Π.reconstruct(𝑡,𝑛) between P𝑖1 , . . . , P𝑖𝑡

Let 𝐼 = {𝑖1, . . . , 𝑖𝑡 }.
1. For 𝛼, 𝛽 ∈ 𝐼 , the parties P𝛼 and P𝛽 run Π.reconstruct⊕ on

the (P𝛼 , P𝛽)-instance and obtain 𝑆
𝛽
𝛼 .

2. For each 𝛼 ∈ 𝐼 , the parties P𝑖 for 𝑖 ≠ 𝛼 send their values of

𝑆𝑖𝛼 to P𝛼 , who in turn reconstructs 𝑆𝛼 from 𝑆
𝑖1
𝛼 , . . . , 𝑆

𝑖𝑡
𝛼 .

3. The parties choose a chair P ∈
{
P𝑖1 , . . . , P𝑖𝑡

}
. Each party

P𝑖 for 𝑖 ∈ 𝐼 send its share 𝑆𝑖 to P.
4. The chair reconstructs 𝑅 from 𝑆𝑖1 , . . . , 𝑆𝑖𝑡 , computes 𝑆 :=

𝐺 (𝑅) ⊕ 𝐶 and sends it to the P𝑖 for 𝑖 ∈ 𝐼 .
5. Each party outputs 𝑆 .

Figure 8: The reconstruction phase of the SSS scheme Π (𝑡,𝑛) .

two “symmetric” procedures described in Steps 2 and 3 (think of

them as going through the column and through the row of the

matrix on Fig. 9). If the dealer discovers fraud proof in any of these

steps, he forwards it to the judge (labeling it appropriately). Note

that in our model, the hash transcripts are not bound to specific Π⊕
instances, and hence, the dealer receives just one transcript that

needs to be scanned for each instance independently. In practice,

this can be optimized by performing just one scan that looks for

the fraud proofs in parallel. We choose not to do it in order to keep

our scheme modular.

4.2 Security analysis
Theorem 4.1. Consider fixed 𝑛 and 𝑡 and let 𝜎 be a function of 𝜅

such that 𝜅 ≥ 2 log
2
(𝜎/𝑡). Let Π⊕ be the SSS protocol (constructed on

Figs. 3 to 5) with 𝑑 :=
⌈
log

2
(𝜎/(𝜅𝑡))

⌉
+ 4. 9 Then the scheme Π (𝑡,𝑛)

(constructed on Figs. 6 to 8) is a secure 𝑡-out-of-𝑛 SSS scheme with the
slow query budget 𝜎 .

Proof. In order to prove the theorem, we need to argue that Π
is correct, punishable, and unframable.

4.2.1 Correctness. We assume that all the inputs of the reconstruc-

tion algorithm of the 𝑡-out-of-𝑛 SSS scheme were computed as in

the sharing algorithm. What is more, all the values 𝑆
𝛽
𝛼 in the recon-

struction algorithm are reconstructed to values 𝑆
𝛽
𝛼 from the sharing

algorithm with overwhelming probability, due to the correctness

property of the Π.share⊕ algorithm, the fact that 𝜅 ≥ 2 log
2
(𝜎/𝑡)

and the union bound. The other steps of the reconstruction al-

gorithm are deterministically reverting the process of the sharing

algorithm, thus correctness holds.

4.2.2 Punishability. Fix a distributed adversaryA and assume that

each coalition consists of less than 𝑡 parties. We need to show that:

AdvJA ⇆ Π (𝑡,𝑛) ;𝜅K − negl(𝜅) ≤ Pr

[
PunishedJA, 𝑆 ;𝜅K

]
. First,

consider the SharingJA ⇆ Π (𝑡,𝑛) , 𝑏;𝜅K experiment. Similarly, as

in the proof of punishability of the Π⊕ scheme, let Broken denote

the event that the adversary submitted a query of the form “𝑘” | | 𝑅
for some 𝑘 ∈ N to Ω𝐻 (i.e., one of the queries necessary to compute

𝐺 (𝑅)). It is easy to see that we have: AdvJA ⇆ Π (𝑡,𝑛) ;𝜅K ≤
Pr[Broken] . Similar to what we did in the proof of Theorem 3.1

with overwhelming probability none of the queries done by the

adversary in the precomputation phase is a scratch, and there are

no collisions between the values of 𝑋 ℓ
used in the instances of Π⊕ ,

which we will furthermore assume. From now on, let us assume

that none of these unlikely events have happened.

For any 𝛼, 𝛽 ∈ [𝑛], let 𝑅𝛽𝛼 be the value 𝑅 computed in the

sharing algorithm of the Π⊕ scheme (cf. Fig. 3) and let Broken𝛽𝛼
be the event that the preimage of 𝑅

𝛽
𝛼 was submitted to the ora-

cle. In other words, Broken𝛽𝛼 means the event Broken⊕ occurred

in the (P𝛼 , P𝛽)-instance of Π⊕ and let Fast𝛽𝛼 be the event that

there was a fast scratch query in that instance. Furthermore, let

Broken𝛼 be the event that Broken𝛽𝛼 occurred for 𝛼, 𝛽 such that

P𝛼 and P𝛽 do not share a coalition. Finally, let Broken(𝑡) be the
event that Broken𝛼 occurred for at least 𝑡 distinct values of 𝛼 .

Since the size of each coalition is strictly less than 𝑡 and the se-

cret sharing scheme is information-theoretically hiding, we obtain

that Pr[Broken] ≤ Pr[Broken(𝑡)] . Note that the punishability of

the 2-out-of-2 sharing scheme, as discussed in Section 3.2.2, still

holds even if the adversary controls some parties who are not

shareholders but might participate in a reconstruction attempt.

9
This value of 𝑑 corresponds to instantiating Π⊕ with a slow query budget 𝜎 ′ := 𝜎/𝑡
per instance, cf. Theorem 3.1.

Secret Sharing with Snitching CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA.

P1 P2 . . . Pn−1 Pn

...

Sβ
α

P1

P2

Pn−1

Pn

Figure 9: An example of illegal reconstruction in the thresh-
old scheme. The blue rectangles on the diagonal describe
coalitions. Within each coalition, the parties can freely re-
cover the 𝑆𝛽𝛼 . The red cross marks denote the events Broken𝛽𝛼 .

Note that clearly, the sets of scratches are made in different in-

stances of the Π.share⊕ procedure are with overwhelming prob-

ability disjoint since the 𝑋 ℓ
𝑖
are sampled freshly. Since the slow

query budget of the adversary is 𝜎 , it follows that in at least one

instance, the adversary made at most 𝜎/𝑡 slow queries, and, conse-

quently, made at least one scratch query while reconstructing 𝑆
𝛽
𝛼 ,

i.e., Pr[Broken(𝑡)] ≤ Pr

[
∃𝛼∃𝛽 : Fast𝛽𝛼

]
+ negl(𝜅). It is easy to see

that the above still holds in the SnitchingJ𝑆,A ⇆ Π (𝑡,𝑛) ;𝜅K exper-

iment, as argued in Section 3.2.2 and that Fast𝛽𝛼 implies that either

of the parties P𝛼 and P𝛽 is punishable.

4.2.3 Unframability. Fix an honest party P𝑖∗ . Suppose that a mono-

lithic adversary M0
corrupts the dealer D and some sharehold-

ers P𝑗1 , . . . , P𝑗𝑚 . The punishment algorithm of the 𝑡-out-of-𝑛 SSS

scheme runs the punishment subprocedure of the underlying Π⊕
scheme. Notice that, with overwhelming probability, all the values

𝑋 ℓ
in the instances of Π⊕ are distinct, so we might only consider

the instances of Π⊕ in which P𝑖∗ participates. For any instance

in which P𝑖∗ participates, the party will not be framed due to the

unframability of the Π⊕ scheme and the claim follows from the

union bound. □

4.3 Discussion
4.3.1 Efficiency analysis. We will neglect the constants in the fol-

lowing analysis and focus on the asymptotic properties. Since the

threshold scheme does not explicitly compute hashes and the ex-

ecution of Π (𝑡,𝑛) requires Θ(𝑛2) executions of Π⊕ , each of the

shareholders P𝑖 have to make Θ(𝑛𝜅) slow queries, whereas the

dealer D needs to make Θ(𝑛2𝜅) slow queries, as per Section 3.3.1.

Since the reconstruction of each 2-out-of-2 instance requires an

expected 𝜅2𝑑−1 queries to Ω𝐻 , and 2
𝑑−1 = 8𝜎/(𝜅 · 𝑡), the full re-

construction in the 𝑡-out-of-𝑛 scheme requires Θ(𝑡𝜎) queries. In
an honest reconstruction, all of them will be fast. In an adversarial

setting, the number of slow queries will depend on the maximum

size of the coalition 𝑘 . We will analyze two extreme cases: 𝑘 = 1

and 𝑘 = 𝑡 − 1. In any case, the adversary needs to reconstruct Θ(𝑡2)
instances of Π⊕ . If 𝑘 = 1, then all of them have to be slow, which

yields Θ(𝑡𝜎) slow queries. If 𝑘 = 𝑡 − 1, then the adversary can

use fast queries for the instances shared by the coalition members

and only needs to reconstruct 𝑡 of them using slow queries, which

amounts to Θ(𝜎) slow queries. The ratio between the number of

queries in the dishonest execution and the parameter #slow in the

honest execution is Θ(𝑡/𝑛 · 𝜎/𝜅) for 𝑘 = 1 and Θ(1/𝑛 · 𝜎/𝜅) for
𝑘 = 𝑡 − 1. Assuming 𝜅 = 2 log

2
𝜎 , as previously, this amounts to

Θ(𝑡/𝑛 · 𝜎/log
2
𝜎) and Θ(1/𝑛 · 𝜎/log

2
𝜎), respectively.

4.3.2 The parameter 𝜎 . The punishability would still hold for the

threshold scheme, even if we used the underlying scheme Π⊕ with

any parameter 𝜎′, such that 𝜎/𝑡 ≤ 𝜎′ ≤ 𝜎 . Choosing 𝜎′ = 𝜎/𝑡 is
optimal in the sense that it enables lower values of𝜅 for a given slow

query bound 𝜎 or, equivalently, improves the maximum number of

slow queries 𝜎 that a fixed security parameter 𝜅 protects against.

5 Conclusions and open problems
Our novel primitive of secret sharing with snitching (SSS) provides

a way to discourage collusion in secret-sharing schemes by intro-

ducing a threat of punishment for the colluding parties. We base

our construction on the assumption that computing hashes in MPC

is moderately hard, i.e., that massive hash computations in MPC

are infeasible while allowing the parties to compute a few hashes

in MPC. We also introduced a generalization of the random-oracle

model, which allows modeling hash evaluations made inside MPC.

We leave it as an open question to what extent concrete hash func-

tions.

6 Acknowledgments
This work was supported by the European Research Council (ERC)

under the European Union’s Horizon 2020 innovation program

(grant PROCONTRA-885666), by an NCN Grant 2019/35/B/ST6/041-

38, and by the Copernicus Awards (agreement no. COP/01/2020).

In addition, this work has been partially funded by the German

Research Foundation (DFG) CRC 1119 CROSSING (project S7),

by the European Research Council (ERC) under the European

Union’s Horizon 2020 innovation program (grant CRYPTOLAYER-

101044770) and the Copernicus Award (INST 18989/419-1). We

would also like to thank the anonymous ACM CCS reviewers for

their helpful comments.

References
[1] Joël Alwen, Abhi Shelat, and Ivan Visconti. 2008. Collusion-Free Protocols in

the Mediated Model. In Advances in Cryptology - CRYPTO 2008, 28th Annual
International Cryptology Conference, Santa Barbara, CA, USA, August 17-21, 2008.
Proceedings (Lecture Notes in Computer Science, Vol. 5157), David A. Wagner (Ed.).

Springer, 497–514. https://doi.org/10.1007/978-3-540-85174-5_28

[2] Leemon Baird, Pratyay Mukherjee, and Rohit Sinha. 2022. i-TiRE: Incremen-

tal Timed-Release Encryption or How to use Timed-Release Encryption on

Blockchains?. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2022, Los Angeles, CA, USA, November 7-11, 2022,
Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi (Eds.). ACM, 235–248.

https://doi.org/10.1145/3548606.3560704

[3] Carsten Baum, James Hsin-yu Chiang, Bernardo David, Tore Kasper Frederiksen,

and Lorenzo Gentile. 2021. SoK: Mitigation of Front-running in Decentralized

Finance. IACR Cryptol. ePrint Arch. (2021), 1628. https://eprint.iacr.org/2021/1628
[4] Mihir Bellare and Phillip Rogaway. 1993. Random Oracles are Practical: A Para-

digm for Designing Efficient Protocols. In CCS ’93, Proceedings of the 1st ACM Con-
ference on Computer and Communications Security, Fairfax, Virginia, USA, Novem-
ber 3-5, 1993, Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu,

and Victoria Ashby (Eds.). ACM, 62–73. https://doi.org/10.1145/168588.168596

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-

tended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory of
Computing, May 2-4, 1988, Chicago, Illinois, USA, Janos Simon (Ed.). ACM, 1–10.

https://doi.org/10.1145/62212.62213

https://doi.org/10.1007/978-3-540-85174-5_28
https://doi.org/10.1145/3548606.3560704
https://eprint.iacr.org/2021/1628
https://doi.org/10.1145/168588.168596
https://doi.org/10.1145/62212.62213

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA. Stefan Dziembowski, Sebastian Faust, Tomasz Lizurej, and Marcin Mielniczuk

[6] Dan Boneh, Aditi Partap, and Lior Rotem. 2023. Accountability for Misbehavior in

Threshold Decryption via Threshold Traitor Tracing. Cryptology ePrint Archive,

Paper 2023/1724. https://eprint.iacr.org/2023/1724 https://eprint.iacr.org/2023/

1724.

[7] Dan Boneh, Aditi Partap, and Lior Rotem. 2024. Traceable Secret Sharing: Strong

Security and Efficient Constructions. Cryptology ePrint Archive, Paper 2024/405.

https://eprint.iacr.org/2024/405 https://eprint.iacr.org/2024/405.

[8] Vitalik Buterin. 2022. Proof of stake: The making of Ethereum and the philosophy
of blockchains. Seven Stories Press.

[9] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-

tionally Secure Protocols (Extended Abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing, May 2-4, 1988, Chicago, Illinois, USA,
Janos Simon (Ed.). ACM, 11–19. https://doi.org/10.1145/62212.62214

[10] Benny Choc, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. VERI-

FIABLE SECRET SHARING AND ACHIEVING SIMULTANEITY IN THE PRES-

ENCE OF FAULTS.. In Annual Symposium on Foundations of Computer Science
(Proceedings). 383–395.

[11] Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. 1998. Private

Information Retrieval. J. ACM 45, 6 (1998), 965–981. https://doi.org/10.1145/

293347.293350

[12] Henry Corrigan-Gibbs and Dmitry Kogan. 2020. Private Information Retrieval

with Sublinear Online Time. In Advances in Cryptology - EUROCRYPT 2020 - 39th
Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, May 10-14, 2020, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 12105), Anne Canteaut and Yuval Ishai (Eds.). Springer,

44–75. https://doi.org/10.1007/978-3-030-45721-1_3

[13] Ronald Cramer, Ivan Damgård, and Jesper Buus Nielsen. 2015. Se-
cure Multiparty Computation and Secret Sharing. Cambridge University

Press. http://www.cambridge.org/de/academic/subjects/computer-science/

cryptography-cryptology-and-coding/secure-multiparty-computation-and-

secret-sharing?format=HB&isbn=9781107043053

[14] Philip Daian, Steven Goldfeder, Tyler Kell, Yunqi Li, Xueyuan Zhao, Iddo Bentov,

Lorenz Breidenbach, and Ari Juels. 2020. Flash Boys 2.0: Frontrunning in Decen-

tralized Exchanges, Miner Extractable Value, and Consensus Instability. In 2020
IEEE Symposium on Security and Privacy, SP 2020, San Francisco, CA, USA, May
18-21, 2020. IEEE, 910–927. https://doi.org/10.1109/SP40000.2020.00040

[15] Stefan Dziembowski, Sebastian Faust, and Tomasz Lizurej. 2023. Individual

Cryptography. In Advances in Cryptology - CRYPTO 2023 - 43rd Annual Inter-
national Cryptology Conference, CRYPTO 2023, Santa Barbara, CA, USA, August
20-24, 2023, Proceedings, Part II (Lecture Notes in Computer Science, Vol. 14082),
Helena Handschuh and Anna Lysyanskaya (Eds.). Springer, 547–579. https:

//doi.org/10.1007/978-3-031-38545-2_18

[16] Ittay Eyal and Emin Gün Sirer. 2018. Majority is not enough: bitcoin mining is

vulnerable. Commun. ACM 61, 7 (2018), 95–102. https://doi.org/10.1145/3212998

[17] Juan A. Garay, Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas.

2013. Rational Protocol Design: Cryptography against Incentive-Driven Adver-

saries. In 54th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2013, 26-29 October, 2013, Berkeley, CA, USA. IEEE Computer Society, 648–657.

https://doi.org/10.1109/FOCS.2013.75

[18] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone

Protocol: Analysis and Applications. In Advances in Cryptology - EUROCRYPT
2015 - 34th Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part II
(Lecture Notes in Computer Science, Vol. 9057), Elisabeth Oswald and Marc Fischlin

(Eds.). Springer, 281–310. https://doi.org/10.1007/978-3-662-46803-6_10

[19] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing,

1987, New York, New York, USA, Alfred V. Aho (Ed.). ACM, 218–229. https:

//doi.org/10.1145/28395.28420

[20] Tiantian Gong, Ryan Henry, Alexandros Psomas, and Aniket Kate. 2023.

More is Merrier: Relax the Non-Collusion Assumption in Multi-Server PIR.

arXiv:2201.07740 [cs.CR] https://arxiv.org/abs/2201.07740

[21] Joseph Y. Halpern and Vanessa Teague. 2004. Rational secret sharing and mul-

tiparty computation: extended abstract. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, László
Babai (Ed.). ACM, 623–632. https://doi.org/10.1145/1007352.1007447

[22] Marcella Hastings, Brett Hemenway, Daniel Noble, and Steve Zdancewic. 2019.

SoK: General Purpose Compilers for Secure Multi-Party Computation. In 2019
IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA, May
19-23, 2019. IEEE, 1220–1237. https://doi.org/10.1109/SP.2019.00028

[23] Mahimna Kelkar, Kushal Babel, Philip Daian, James Austgen, Vitalik Buterin, and

Ari Juels. 2023. Complete Knowledge: Preventing Encumbrance of Cryptographic

Secrets. IACR Cryptol. ePrint Arch. (2023), 44. https://eprint.iacr.org/2023/044

[24] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017.

Ouroboros: A Provably Secure Proof-of-Stake Blockchain Protocol. In Advances
in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part I (Lecture Notes in
Computer Science, Vol. 10401), Jonathan Katz and Hovav Shacham (Eds.). Springer,

357–388. https://doi.org/10.1007/978-3-319-63688-7_12

[25] Matt Lepinski, Silvio Micali, and Abhi Shelat. 2005. Collusion-free protocols.

In Proceedings of the 37th Annual ACM Symposium on Theory of Computing,
Baltimore, MD, USA, May 22-24, 2005, Harold N. Gabow and Ronald Fagin (Eds.).

ACM, 543–552. https://doi.org/10.1145/1060590.1060671

[26] Easwar Vivek Mangipudi, Donghang Lu, Alexandros Psomas, and Aniket Kate.

2023. Collusion-Deterrent Threshold Information Escrow. In 36th IEEE Computer
Security Foundations Symposium, CSF 2023, Dubrovnik, Croatia, July 10-14, 2023.
IEEE, 584–599. https://doi.org/10.1109/CSF57540.2023.00010

[27] Michael Mitzenmacher and Eli Upfal. 2005. Probability and Computing: Random-
ized Algorithms and Probabilistic Analysis. Cambridge University Press, USA.

[28] Satoshi Nakamoto. 2008. Bitcoin: A peer-to-peer electronic cash system. (2008).

[29] R. L. Rivest, A. Shamir, and D. A. Wagner. 1996. Time-lock Puzzles and Timed-
release Crypto. Technical Report. USA.

[30] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. 1994. How to share

a function securely. In Proceedings of the Twenty-Sixth Annual ACM Symposium on
Theory of Computing, 23-25 May 1994, Montréal, Québec, Canada, Frank Thomson

Leighton and Michael T. Goodrich (Eds.). ACM, 522–533. https://doi.org/10.1145/

195058.195405

[31] Okke Schrijvers, Joseph Bonneau, Dan Boneh, and Tim Roughgarden. 2016.

Incentive Compatibility of Bitcoin Mining Pool Reward Functions. In Financial
Cryptography and Data Security - 20th International Conference, FC 2016, Christ
Church, Barbados, February 22-26, 2016, Revised Selected Papers (Lecture Notes in
Computer Science, Vol. 9603), Jens Grossklags and Bart Preneel (Eds.). Springer,

477–498. https://doi.org/10.1007/978-3-662-54970-4_28

[32] Adi Shamir. 1979. How to Share a Secret. Commun. ACM 22, 11 (1979), 612–613.

https://doi.org/10.1145/359168.359176

[33] Abhi Shelat. 2010. Collusion-free protocols. In Proceedings of the Behavioral and
Quantitative Game Theory - Conference on Future Directions, BQGT ’10, Newport
Beach, California, USA, May 14-16, 2010, Moshe Dror and Greys Sosic (Eds.). ACM,

91:1. https://doi.org/10.1145/1807406.1807497

[34] Wikipedia contributors. 2023. Trusted execution environment — Wikipedia,

The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Trusted_

execution_environment&oldid=1153071242 [Online; accessed 5-May-2023].

[35] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended

Abstract). In 23rd Annual Symposium on Foundations of Computer Science, Chicago,
Illinois, USA, 3-5 November 1982. IEEE Computer Society, 160–164. https://doi.

org/10.1109/SFCS.1982.38

https://eprint.iacr.org/2023/1724
https://eprint.iacr.org/2023/1724
https://eprint.iacr.org/2023/1724
https://eprint.iacr.org/2024/405
https://eprint.iacr.org/2024/405
https://doi.org/10.1145/62212.62214
https://doi.org/10.1145/293347.293350
https://doi.org/10.1145/293347.293350
https://doi.org/10.1007/978-3-030-45721-1_3
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
http://www.cambridge.org/de/academic/subjects/computer-science/cryptography-cryptology-and-coding/secure-multiparty-computation-and-secret-sharing?format=HB&isbn=9781107043053
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-031-38545-2_18
https://doi.org/10.1007/978-3-031-38545-2_18
https://doi.org/10.1145/3212998
https://doi.org/10.1109/FOCS.2013.75
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1145/28395.28420
https://doi.org/10.1145/28395.28420
https://arxiv.org/abs/2201.07740
https://arxiv.org/abs/2201.07740
https://doi.org/10.1145/1007352.1007447
https://doi.org/10.1109/SP.2019.00028
https://eprint.iacr.org/2023/044
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1145/1060590.1060671
https://doi.org/10.1109/CSF57540.2023.00010
https://doi.org/10.1145/195058.195405
https://doi.org/10.1145/195058.195405
https://doi.org/10.1007/978-3-662-54970-4_28
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/1807406.1807497
https://en.wikipedia.org/w/index.php?title=Trusted_execution_environment&oldid=1153071242
https://en.wikipedia.org/w/index.php?title=Trusted_execution_environment&oldid=1153071242
https://doi.org/10.1109/SFCS.1982.38
https://doi.org/10.1109/SFCS.1982.38

	Abstract
	1 Introduction
	1.1 Applications
	1.2 Other related work

	2 The definition of the Secret Sharing with Snitching
	2.1 Basic setting and terminology
	2.2 Protocol execution
	2.3 SSS properties
	2.4 Remarks on the definition

	3 The n-out-of-n SSS scheme
	3.1 Our construction
	3.2 Security Analysis
	3.3 Discussion

	4 The t-out-of-n SSS scheme
	4.1 Our construction
	4.2 Security analysis
	4.3 Discussion

	5 Conclusions and open problems
	6 Acknowledgments
	References

