Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression
"> Figure 1
<p>Location of study area. The study area is a part of the Yellow River Delta in Shandong province, China. The black frame confines our target area for soil salinity retrieval, corresponding to an ALI scene. The red line delineates the boundary of the Delta, and the red solid circles denote sampling sites.</p> "> Figure 2
<p>Correlation relationship between soil salinity and field spectra data (red lines). ALI relative spectral functions were superimposed to illustrate the positions of ALI spectral bands (blue lines).</p> "> Figure 3
<p>Mean spectral reflectance for soils at different saline levels. Non-saline, slightly saline, moderately saline and highly saline soils are defined in terms of soil salinity value as 0 < SSC < 1 g∙kg<sup>−1</sup>, 1 < SSC < 2 g∙kg<sup>−1</sup>, 2 < SSC < 4 g∙kg<sup>−1</sup> and SSC > 4 g∙kg<sup>−1</sup>.</p> "> Figure 4
<p>Regression coefficients for the PLSR model obtained from total soil samples and field spectra data. Important wavelengths for soil salinity retrieval are marked in red color. Central wavelengths of ALI bands were denoted with arrows and band numbers.</p> "> Figure 5
<p>Comparison of measured and modelled soil salinity with modelling samples (<b>a</b>) and validation samples (<b>b</b>). The horizontal axis denotes measured soil salinity, and the vertical axis denotes modelled soil salinity. Slope and intercept, <span class="html-italic">R</span><sup>2</sup>, RMSE and sample numbers are provided for the comparison.</p> "> Figure 6
<p>Spatial distribution of ozone concentration (<b>a</b>); water vapor content (<b>b</b>) and aerosol optical thickness at 550 nm (<b>c</b>) within the Yellow River Delta. The 30 m-resolution values were interpolated from MODIS atmosphere products.</p> "> Figure 7
<p>Soil salinity map over study area and detailed soil salinity distribution at three agricultural lands in the north with slight-moderately saline soils (<b>a</b>); along the Yellow River with non-saline and slightly saline soils (<b>b</b>) and in the south with moderate-to-highly saline soils (<b>c</b>).</p> "> Figure 8
<p>Scatterplots of measured soil salinity <span class="html-italic">versus</span> total retrieval error (<b>a</b>); model related error (<b>b</b>) and data related error (<b>c</b>). Slope and intercept values for linear regression and R<sup>2</sup> value are given for each scatterplot.</p> "> Figure 9
<p>Simulated uncertainty in soil salinity retrievals due to ALI sensor calibration (<b>a</b>); ozone data (<b>b</b>); water vapor data (<b>c</b>); and aerosol data (<b>d</b>). The horizontal axes denote parameter and uncertainty, and the vertical axis denotes retrieval error at a given parameter and uncertainty.</p> ">
Abstract
:1. Introduction
2. Materials and Methodology
2.1. Study Area
2.2. Data Processing
2.2.1. Remote Sensing Data
Band | Wavelength (μm) | ||
---|---|---|---|
Landsat 7 ETM+ | EO-1 ALI | Landsat 8 OLI | |
Blue 1p | -- | 0.43–0.45 | 0.43–0.45 |
Blue 1 | 0.45–0.52 | 0.45–0.52 | 0.45–0.51 |
Green 2 | 0.52–0.60 | 0.53–0.61 | 0.53–0.59 |
Red 3 | 0.63–0.69 | 0.63–0.69 | 0.64–0.67 |
NIR 4 | 0.77–0.90 | 0.78–0.81 | -- |
NIR 4p | -- | 0.85–0.89 | 0.85–0.88 |
SWIR 5p | -- | 1.20–1.30 | 1.36–1.38 |
SWIR 5 | 1.55–1.75 | 1.55–1.75 | 1.57–1.65 |
SWIR 7 | 2.09–2.35 | 2.08–2.35 | 2.11–2.29 |
2.2.2. Field Campaign and Laboratory Analysis
Statistical Indicators | Meteorological Factors | |||
---|---|---|---|---|
Temperature (°C) | Relative Humidity (%) | Wind Speed (m/s) | Sunshine Duration (h) | |
Mean | 13.5 | 39.4 | 2.8 | 9.6 |
SD | 3.5 | 8.5 | 0.9 | 2.5 |
2.3. Methodology
2.3.1. Atmospheric Correction
2.3.2. Partial Least Square Regression (PLSR) Model and Performance Assessment
2.3.3. Soil Salinity Mapping and Error Analysis
2.3.4. Uncertainty Analysis
3. Results
3.1. Statistical Descriptions of Field Spectra Data
3.2. Statistical Descriptions of ALI-Convolved Field Spectra Data
Level | Range (g∙kg−1) | Mean (g∙kg−1) | Mean Spectral Reflectance (%) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
1p | 1 | 2 | 3 | 4 | 4p | 5p | 5 | 7 | |||
non-saline | 0–1 | 0.72 | 9.6 | 11.6 | 17.2 | 21.3 | 25.7 | 26.5 | 30.5 | 31.4 | 28.8 |
slight | 1–2 | 1.50 | 9.1 | 10.8 | 15.7 | 19.0 | 25.3 | 26.5 | 30.5 | 29.9 | 25.2 |
moderate | 2–4 | 2.91 | 7.1 | 8.5 | 12.3 | 15.2 | 19.4 | 20.4 | 24.2 | 23.8 | 19.7 |
high | >4 | 4.80 | 12.2 | 13.3 | 16.6 | 18.8 | 20.2 | 20.3 | 22.1 | 22.6 | 20.4 |
SSC/Spectra | SSC | 1p | 1 | 2 | 3 | 4 | 4p | 5p | 5 | 7 |
---|---|---|---|---|---|---|---|---|---|---|
SSC | 1.000 | -- | -- | -- | -- | -- | -- | -- | -- | -- |
1p | 0.144 | 1.000 | -- | -- | -- | -- | -- | -- | -- | -- |
1 | 0.060 | 0.994 | 1.000 | -- | -- | -- | -- | -- | -- | -- |
2 | −0.134 | 0.937 | 0.966 | 1.000 | -- | -- | -- | -- | -- | -- |
3 | −0.264 | 0.864 | 0.910 | 0.981 | 1.000 | -- | -- | -- | -- | -- |
4 | −0.477 | 0.694 | 0.755 | 0.858 | 0.899 | 1.000 | -- | -- | -- | -- |
4p | −0.516 | 0.631 | 0.697 | 0.800 | 0.851 | 0.992 | 1.000 | -- | -- | -- |
5p | −0.582 | 0.520 | 0.595 | 0.712 | 0.785 | 0.955 | 0.981 | 1.000 | -- | -- |
5 | −0.541 | 0.581 | 0.657 | 0.780 | 0.857 | 0.937 | 0.945 | 0.962 | 1.000 | -- |
7 | −0.469 | 0.642 | 0.711 | 0.822 | 0.891 | 0.865 | 0.852 | 0.859 | 0.958 | 1.000 |
3.3. Important Spectral Wavelengths for Soil Salinity Retrieval
3.4. Partial Least Square Regression (PLSR) Model for Soil Salinity Retrieval
Samples | R2 | RPD | Bias | SD | RMSE | N | Linear Regression | |
---|---|---|---|---|---|---|---|---|
a | b | |||||||
Modelling | 0.749 | 3.584 | 0.036 | 0.778 | 0.779 | 45 | 0.748 | 0.638 |
Validation | 0.689 | 2.838 | −0.211 | 0.937 | 0.940 | 23 | 0.757 | 0.391 |
Total | 0.724 | 3.155 | −0.048 | 0.842 | 0.837 | 68 | 0.772 | 0.506 |
3.5. Salinity Mapping Using Partial Least Square Regression (PLSR) Model
3.6. Quantification of Error Related to Soil Salinity Retrieval
4. Discussion
4.1. Potential Use of Advanced Multi-Spectral Sensor for Soil Salinity Retrieval
4.2. Soil Salinity Retrieval from Multi-Spectral Sensor Data Based on Regression Models
4.3. Physical Explanations for Index Based Soil Salinity Estimation
4.4. Primary Uncertainty Associated with Soil Salinity Retrieval
5. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Greenland, D.J. Soil management and soil degradation. Eur. J. Soil Sci. 1981, 32, 301–322. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef]
- Lambers, H. Introduction, dryland salinity: A key environmental issue in southern Australia. Plant Soil 2003, 257, 5–7. [Google Scholar] [CrossRef]
- Thomas, D.S.G.; Middleton, N.J. Salinization: New perspectives on a major desertification issue. J. Arid Environ. 1993, 24, 95–105. [Google Scholar] [CrossRef]
- Metternicht, G.I.; Zinck, J.A. Remote sensing of soil salinity: Potentials and constraints. Remote Sens. Environ. 2003, 85, 1–20. [Google Scholar] [CrossRef]
- Childs, S.W.; Hanks, R.J. Model of soil salinity effects on crop growth. Soil Sci. Soc. Am. J. 1975, 39, 617–622. [Google Scholar] [CrossRef]
- Rozema, J.; Flowers, T. Crops for a salinized world. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef] [PubMed]
- Jardine, A.; Speldewinde, P.; Carver, S.; Weinstein, P. Dryland salinity and ecosystem distress syndrome: Human health implications. EcoHealth 2007, 4, 10–17. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Triantafilis, J.; Odeh, I.O.A.; McBratney, A.B. Five geostatistical models to predict soil salinity from electromagnetic induction data across irrigated cotton. Soil Sci. Soc. Am. J. 2001, 65, 869–878. [Google Scholar] [CrossRef]
- Farifteh, J.; Farshad, A.; George, R.J. Assessing salt-affected soils using remote sensing, solute modelling, and geophysics. Geoderma 2006, 130, 191–206. [Google Scholar] [CrossRef]
- Mulder, V.L.; de Bruin, S.; Schaepman, M.E.; Mayr, T.R. The use of remote sensing in soil and terrain mapping—A review. Geoderma 2011, 162, 1–19. [Google Scholar] [CrossRef]
- Barnes, E.M.; Sudduth, K.A.; Hummel, J.W.; Lesch, S.M.; Corwin, D.L.; Yang, C.H.; Daughtry, C.S.T.; Bausch, W.C. Remote- and ground-based sensor techniques to map soil properties. Photogramm. Eng. Remote Sens. 2003, 69, 619–630. [Google Scholar] [CrossRef]
- Dwivedi, R.S.; Rao, B.R.M. The selection of the best possible Landsat TM band combination for delineating salt-affected soils. Int. J. Remote Sens. 1992, 13, 2051–2058. [Google Scholar] [CrossRef]
- Howari, F.M. The use of remote sensing data to extract information from agricultural land with emphasis on soil salinity. Aust. J. Soil Res. 2003, 41, 1243–1253. [Google Scholar] [CrossRef]
- Ungar, S.G.; Pearlman, J.S.; Mendenhall, J.A.; Reuter, D. Overview of the earth observing one (EO-1) mission. IEEE Trans. Geosci. Remote 2003, 41, 1149–1159. [Google Scholar] [CrossRef]
- Roy, D.; Wulder, M.; Loveland, T.; Allen, R.; Anderson, M.; Helder, D.; Irons, J.; Johnson, D.; Kennedy, R.; Scambos, T. Landsat-8: Science and product vision for terrestrial global change research. Remote Sens. Environ. 2014, 145, 154–172. [Google Scholar] [CrossRef]
- Mougenot, B.; Pouget, M.; Epema, G.F. Remote sensing of salt affected soils. Remote Sens. Rev. 1993, 7, 241–259. [Google Scholar] [CrossRef]
- Golovina, N.; Minskiy, D.Y.; Pankova, Y.I.; Solovʼyev, D. Automated air photo interpretation in the mapping of soil salinization in cotton-growing zones. Mapp. Sci. Rem. Sens. 1992, 29, 262–268. [Google Scholar]
- Dwivedi, R.S.; Sreenivas, K.; Ramana, K.V. Inventory of salt-affected soils and waterlogged areas: A remote sensing approach. Int. J. Remote Sens. 1999, 20, 1589–1599. [Google Scholar] [CrossRef]
- Guan, Y.X.; Liu, G.H.; Liu, Q.S.; Ye, Q.H. The study of salt-affected soils in the Yellow River delta based on remote sensing. J. Remote Sens. 2001, 5, 46–52. (in Chinese). [Google Scholar]
- Elnaggar, A.A.; Noller, J.S. Application of remote-sensing data and decision-tree analysis to mapping salt-affected soils over large areas. Remote Sens. 2009, 2, 151–165. [Google Scholar] [CrossRef]
- Fernandez-Buces, N.; Siebe, C.; Cram, S.; Palacio, J.L. Mapping soil salinity using a combined spectral response index for bare soil and vegetation: A case study in the former lake Texcoco, Mexico. J. Arid Environ. 2006, 65, 644–667. [Google Scholar] [CrossRef]
- Dwivedi, R.S.; Sreenivas, K. Image transforms as a tool for the study of soil salinity and 33 alkalinity dynamics. Int. J. Remote Sens. 1998, 19, 605–619. [Google Scholar] [CrossRef]
- Shrestha, R.P. Relating soil electrical conductivity to remote sensing and other soil properties for assessing soil salinity in northeast Thailand. Land Degrad. Dev. 2006, 17, 677–689. [Google Scholar] [CrossRef]
- Douaoui, A.E.K.; Nicolas, H.; Walter, C. Detecting salinity hazards within a semiarid context by means of combining soil and remote-sensing data. Geoderma 2006, 134, 217–230. [Google Scholar] [CrossRef]
- Aldakheel, Y.Y. Assessing NDVI spatial pattern as related to irrigation and soil salinity management in Al-Hassa Oasis, Saudi Arabia. J. Indian Soc. Remote 2011, 39, 171–180. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230–231, 1–8. [Google Scholar] [CrossRef]
- Madani, A.A. Soil salinity detection and monitoring using Landsat data: A case study from Siwa Oasis, Egypt. Gisci. Remote Sens. 2005, 42, 171–181. [Google Scholar] [CrossRef]
- Bannari, A.; Guedon, A.M.; El-Harti, A.; Cherkaoui, F.Z.; El-Ghmari, A. Characterization of slightly and moderately saline and sodic soils in irrigated agricultural land using simulated data of Advanced Land Imaging (EO-1) sensor. Commun. Soil Sci. Plan. 2008, 39, 2795–2811. [Google Scholar] [CrossRef]
- Odeh, I.O.A.; Onus, A. Spatial analysis of soil salinity and soil structural stability in a semiarid region of New South Wales, Australia. Environ. Manag. 2008, 42, 265–278. [Google Scholar] [CrossRef]
- Goetz, A.F.H. Three decades of hyperspectral remote sensing of the Earth: A personal view. Remote Sens. Environ. 2009, 113, S5–S16. [Google Scholar] [CrossRef]
- Weng, Y.L.; Gong, P.; Zhu, Z.L. Reflectance spectroscopy for the assessment of soil salt content in soils of the Yellow River Delta of China. Int. J. Remote Sens. 2008, 29, 5511–5531. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Patkin, K.; Banin, A.; Karnieli, A. Mapping of several soil properties using DAIS-7915 hyperspectral scanner data—A case study over clayey soils in Israel. Int. J. Remote Sens. 2002, 23, 1043–1062. [Google Scholar] [CrossRef]
- Farifteh, J.; van der Meer, F.D.; Atzberger, C.; Carranza, E.J.M. Quantitative analysis of salt-affected soil reflectance spectra: A comparison of two adaptive methods (PLSR and ANN). Remote Sens. Environ. 2007, 110, 59–78. [Google Scholar] [CrossRef]
- Weng, Y.L.; Gong, P.; Zhu, Z.L. Soil salt content estimation in the Yellow River delta with satellite hyperspectral data. Can. J. Rem. Sens. 2008, 34, 259–270. [Google Scholar]
- Ben-Dor, E.; Taylor, R.G.; Hill, J.; Dematte, J.A.M.; Whiting, M.L.; Chabrillat, S.; Sommer, S. Imaging spectrometry for soil applications. Adv. Agron. 2008, 97, 321–392. [Google Scholar]
- Ben-Dor, E.; Chabrillat, S.; Dematte, J.A.M.; Taylor, G.R.; Hill, J.; Whiting, M.L.; Sommer, S. Using imaging spectroscopy to study soil properties. Remote Sens. Environ. 2009, 113, S38–S55. [Google Scholar] [CrossRef]
- Wold, S.; Sjöström, M.; Eriksson, L. PLS-regression: A basic tool of chemometrics. Chemometr. Intell. Lab. 2001, 58, 109–130. [Google Scholar] [CrossRef]
- Goldshleger, N.; Livne, I.; Chudnovsky, A.; Ben-Dor, E. New results in integrating passive and active remote sensing methods to assess soil salinity: A case study from Jezre’el Valley, Israel. Soil Sci. 2012, 177, 392–401. [Google Scholar] [CrossRef]
- Goldshleger, N.; Ben-Dor, E.; Lugassi, R.; Eshel, G. Soil degradation monitoring by remote sensing: Examples with three degradation processes. Soil Sci. Soc. Am. J. 2010, 74, 1433–1445. [Google Scholar] [CrossRef]
- Ben-Dor, E.; Metternicht, G.; Goldshleger, N.; Mor, E.; Mirlas, V.; Basson, U. Review of remote sensing-based methods to assess soil salinity. In Remote Sensing of Soil Salinization: Impact on Land Management; Metternicht, G., Zinck, J.A., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 39–60. [Google Scholar]
- Lass, L.W.; Prather, T.S.; Glenn, N.F.; Weber, K.T.; Mundt, J.T.; Pettingill, J. A review of remote sensing of invasive weeds and example of the early detection of spotted knapweed (Centaurea maculosa) and babysbreath (Gypsophila paniculata) with a hyperspectral sensor. Weed Sci. 2005, 53, 242–251. [Google Scholar] [CrossRef]
- Moreira, L.C.J.; dos Santos Teixeira, A.; Galvão, L.S. Laboratory salinization of Brazilian alluvial soils and the spectral effects of gypsum. Remote Sens. 2014, 6, 2647–2663. [Google Scholar] [CrossRef]
- Pang, G.; Wang, T.; Liao, J.; Li, S. Quantitative model based on field-derived spectral characteristics to estimate soil salinity in Minqin County, China. Soil Sci. Soc. Am. J. 2014, 78, 546–555. [Google Scholar] [CrossRef]
- Hick, P.T.; Russell, W.G.R. Some spectral considerations for remote sensing of soil salinity. Aust. J. Soil Res. 1990, 28, 417–431. [Google Scholar] [CrossRef]
- Fan, X.; Pedroli, B.; Liu, G.; Liu, Q.; Liu, H.; Shu, L. Soil salinity development in the yellow river delta in relation to groundwater dynamics. Land Degrad. Dev. 2012, 23, 175–189. [Google Scholar] [CrossRef]
- Tao, J.M.; Fan, X.W.; Weng, Y.L. Soil salt content retrieval from ALI multi-spectral image based on GRNN (in Chinese). Mod. Surv. Mapp. 2012, 35, 10–12. [Google Scholar]
- Yao, R.J.; Yang, J.S.; Liu, G.M.; Zou, P. Spatial variability of soil salinity in characteristic field of the Yellow River Delta. Trans. Chin. Soc. Agric. Eng. 2006, 22, 61–66. (in Chinese). [Google Scholar]
- Weng, Y.L.; Gong, P.; Zhu, Z.L. A spectral index for estimating soil salinity in the Yellow River delta region of China using EO-1 Hyperion data. Pedosphere 2010, 20, 378–388. [Google Scholar] [CrossRef]
- Fang, H.; Liu, G.; Kearney, M. Georelational analysis of soil type, soil salt content, landform, and land use in the Yellow River Delta, China. Environ. Manag. 2005, 35, 72–83. [Google Scholar] [CrossRef]
- USGS. EO-1 Website. Available online: http://eo1.usgs.gov/ (accessed on 4 January 2015).
- Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. [Google Scholar] [CrossRef]
- Friedl, M.A.; Brodley, C.E. Decision tree classification of land cover from remotely sensed data. Remote Sens. Environ. 1997, 61, 399–409. [Google Scholar] [CrossRef]
- Goddard Space Flight Center. Available online: http://ladsweb.nascom.nasa.gov/ (accessed on 4 January 2015).
- Milton, E.J.; Schaepman, M.E.; Anderson, K.; Kneubuhler, M.; Fox, N. Progress in field spectroscopy. Remote Sens. Environ. 2009, 113, S92–S109. [Google Scholar] [CrossRef]
- Van Reeuwijl, L.P. Procedures for Soil Analysis, 3rd ed.; International Soil Reference and Information Centre (ISRIC): Wageningen, The Netherlands, 1992. [Google Scholar]
- Wang, Z.Q.; You, W.R.; Zhu, S.Q. Saline-Alkali Soil of China; Science Publishing: Beijing, China, 1993; pp. 312–390. (in Chinese) [Google Scholar]
- China Meteorological Administration. Available online: http://www.cma.gov.cn/ (accessed on 4 January 2015).
- Fan, X.W.; Liu, Y.B. Quantifying relationship between inter-sensor images in solar reflective bands: Implications for intercalibration. IEEE Trans. Geosci. Remote 2014, 52, 7727–7737. [Google Scholar] [CrossRef]
- Ju, J.C.; Roy, D.P.; Vermote, E.; Masek, J.; Kovalskyy, V. Continental-scale validation of MODIS-based and LEDAPS Landsat ETM plus atmospheric correction methods. Remote Sens. Environ. 2012, 122, 175–184. [Google Scholar] [CrossRef]
- Martens, H.; Martens, M. Modified Jack-knife estimation of parameter uncertainty in bilinear modelling by partial least squares regression (PLSR). Food Qual. Prefer. 2000, 11, 5–16. [Google Scholar] [CrossRef]
- Unscrambler 9.7 Software. Available online: http://www.camo.com/ (accessed on 4 January 2015).
- Nagol, J.R.; Vermote, E.F.; Prince, S.D. Effects of atmospheric variation on AVHRR NDVI data. Remote Sens. Environ. 2009, 113, 392–397. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, X.; Liu, Y.; Tao, J.; Weng, Y. Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sens. 2015, 7, 488-511. https://doi.org/10.3390/rs70100488
Fan X, Liu Y, Tao J, Weng Y. Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sensing. 2015; 7(1):488-511. https://doi.org/10.3390/rs70100488
Chicago/Turabian StyleFan, Xingwang, Yuanbo Liu, Jinmei Tao, and Yongling Weng. 2015. "Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression" Remote Sensing 7, no. 1: 488-511. https://doi.org/10.3390/rs70100488
APA StyleFan, X., Liu, Y., Tao, J., & Weng, Y. (2015). Soil Salinity Retrieval from Advanced Multi-Spectral Sensor with Partial Least Square Regression. Remote Sensing, 7(1), 488-511. https://doi.org/10.3390/rs70100488