[go: up one dir, main page]

Skip to main content
Log in

Powder x-ray diffraction of turbostratically stacked layer systems

  • Articles
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A special form of the Debye formula for calculating the powder x-ray diffraction of a turbostratically stacked layer system is derived, and calculated diffraction patterns for turbostratically stacked graphite and MoS2 layers are presented. Single-molecular-layer MoS2, prepared by exfoliation of lithium-intercalated MoS2 in water or alcohols, has been deposited on various supports, and x-ray diffraction patterns show that the restacking of the MoS2 layers can be perfectly turbostratic. The restacked MoS2 may or may not have water or organic bilayers between them, depending on the deposition conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. E. Warren, Phys. Rev. 59, 693 (1941).

    Article  CAS  Google Scholar 

  2. H. Shi, J. M. Reimers, and J. R. Dahn, J. Appl. Crystallogr. 26, 827 (1993); V.A. Drits and C. Tchoubar, X-Ray Diffraction by Disordered Lamellar Structures (Springer-Verlag, Berlin, 1991).

    Article  CAS  Google Scholar 

  3. B. W. Brindly, X-Ray Identification and Crystal Structure of Clay Minerals, edited by G. Brown (Mineralogical Society, London, 1961), p. 446.

    Google Scholar 

  4. R. Schöllhorn and A. Weiss, J. Less-Comm. Met. 36, 229 (1974).

    Article  Google Scholar 

  5. M.A. Gee, R.F. Frindt, P. Joensen, and S.R. Morrison, Mater. Res. Bull. 21, 541 (1986).

    Article  Google Scholar 

  6. R. Bissessur, J. L. Schindler, C. R. Kannewurf, and M. Kanatzidis, Mol. Cryst. Liq. Cryst. 254, 249 (1994).

    Article  Google Scholar 

  7. H. Tagaya, T. Hashimoto, M. Karasu, T. Izumi, and T. Chiba, Chem. Lett., 2113 (1991).

    Google Scholar 

  8. W. M. R. Divigalpitiya, R. F. Frindt, and S. R. Morrison, Science 246, 389 (1989).

    Article  Google Scholar 

  9. B. E. Warren and P. Bodenstein, Acta Crystallogr. 18, 282 (1965).

    Article  CAS  Google Scholar 

  10. R. C. Reynolds, in Modern Powder Diffraction, Reviews in Mineralogy (Mineralogical Society of America, 1989), Vol. 20, Chap. 6, pp. 145–182.

  11. K. S. Liang, R. R. Chianelli, F. Z. Chien, and S. C. Moss, J. Non-Cryst. Solids 79, 251 (1986).

    Article  CAS  Google Scholar 

  12. A. Guinier, X-ray Diffraction (Freeman, San Francisco, 1963).

    Google Scholar 

  13. R. D. Hall and R. Monot, Computing in Physics, 414 (1991).

  14. D. Yang, S. J. Sandoval, W. M. R. Divigalpitiya, J. C. Irwin, and R. F. Frindt, Phys. Rev. B 43, 12 053 (1991).

    Google Scholar 

  15. D. Yang, Ph.D. Thesis, Simon Fraser University (1993).

  16. P. Joensen, R. F. Frindt, and S. R. Morrison, Mater. Res. Bull. 21, 457 (1986).

    Article  CAS  Google Scholar 

  17. L. Pauling, The Nature of the Chemical Bond (Cornell University Press, Cornell, NY, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, D., Frindt, R.F. Powder x-ray diffraction of turbostratically stacked layer systems. Journal of Materials Research 11, 1733–1738 (1996). https://doi.org/10.1557/JMR.1996.0217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/JMR.1996.0217

Navigation