[go: up one dir, main page]

Skip to main content
Log in

Analysis of Natural and Artificial Phenomena Using Signal Processing and Fractional Calculus

  • Research Paper
  • Published:
Fractional Calculus and Applied Analysis Aims and scope Submit manuscript

Abstract

In this paper we study several natural and man-made complex phenomena in the perspective of dynamical systems. For each class of phenomena, the system outputs are time-series records obtained in identical conditions. The time-series are viewed as manifestations of the system behavior and are processed for analyzing the system dynamics. First, we use the Fourier transform to process the data and we approximate the amplitude spectra by means of power law functions. We interpret the power law parameters as a phenomenological signature of the system dynamics. Second, we adopt the techniques of non-hierarchical clustering and multidimensional scaling to visualize hidden relationships between the complex phenomena. Third, we propose a vector field based analogy to interpret the patterns unveiled by the PL parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of small-world networks. Proc. of the National Academy of Sciences 97, No 21 (2000), 11149–11152.

    Google Scholar 

  2. A. Arenas, L. Danon, A. Diaz-Guilera, P. M. Gleiser, and R. Guimera, Community analysis in social networks. The European Physical J. BCondensed Matter and Complex Systems 38, No 2 (2004), 373–380.

    MATH  Google Scholar 

  3. W. B. Arthur, Complexity and the economy. Science 284, No 5411 (1999), 107–109.

    Google Scholar 

  4. D. Baleanu, K. Diethelm, E. Scalas, and J. J. Trujillo, Fractional Calculus Models and Numerical Methods. Ser. on Complexity, Nonlinearity and Chaos, World Scientific (2012).

    Book  Google Scholar 

  5. A.-L. Barabási, H. Jeong, Z. Néda, E. Ravasz, A. Schubert, and T. Vicsek, Evolution of the social network of scientific collaborations. Physica A: Statistical Mechanics and its Applications 311, No 3 (2002), 590–614.

    MathSciNet  MATH  Google Scholar 

  6. D. S. Bassett and E. Bullmore, Small-world brain networks. The Neuroscientist 12, No 6 (2006), 512–523.

    Google Scholar 

  7. P. Bhattacharya, B. K. Chakrabarti, and Kamal, A fractal model of earthquake occurrence: Theory, simulations and comparisons with the aftershock data. Journal of Physics: Conference Series 319, No 1 (2011), 1012004.

    Google Scholar 

  8. C. M. Bishop, Pattern Recognition and Machine Learning, Springer, New York (2006).

    MATH  Google Scholar 

  9. T. F. Cox and M. A. Cox, Multidimensional Scaling, CRC Press (2000).

    MATH  Google Scholar 

  10. J. Foster, From simplistic to complex systems in economics. Cambridge J. of Economics 29, No 6 (2005), 873–892.

    Google Scholar 

  11. T. J. Foxon, J. Köhler, J. Michie, and C. Oughton, Towards a new complexity economics for sustainability. Cambridge J. of Economics 37, No 1 (2013), 187–208.

    Google Scholar 

  12. A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, Physiobank, physiotoolkit, and physionet components of a new research resource for complex physiologic signals. Circulation 101, No 23 (2000), e215–e220.

    Google Scholar 

  13. F. Guzzetti, B. D. Malamud, D. L. Turcotte, and P. Reichenbach, Power-law correlations of landslide areas in central Italy. Earth and Planetary Science Letters 195, No 3 (2002), 169–183.

    Google Scholar 

  14. H. Haken, Information and Self-Organization: A Macroscopic Approach to Complex Systems. Springer (2006).

    MATH  Google Scholar 

  15. W.-Q. Huang, X.-T. Zhuang, and S. Yao, A network analysis of the chinese stock market. Physica A: Statistical Mechanics and its Applications 388, No 14 (2009), 2956–2964.

    Google Scholar 

  16. C. M. Ionescu, The Human Respiratory System: An Analysis of the Interplay between Anatomy, Structure, Breathing and Fractal Dynamics. Springer (2013).

  17. A. K. Jain, Data clustering: 50 years beyond k-means. Pattern Recognition Letters 31, No 8 (2010), 651–666.

    Google Scholar 

  18. N. F. Johnson, P. Jefferies, and P. M. Hui, Financial market complexity. OUP Catalogue (2003).

    Google Scholar 

  19. A. Kato, J. Murai, S. Katsuno, and T. Asami, An internet traffic data repository: The architecture and the design policy. In: INET’99 Proceedings (1999).

    Google Scholar 

  20. M. S. Keshner, 1/f noise. Proceedings of the IEEE 70, No 3 (1982), 212–218.

    Google Scholar 

  21. K. Kiyono, Z. R. Struzik, N. Aoyagi, F. Togo, and Y. Yamamoto, Phase transition in a healthy human heart rate. Physical Review Letters 95, No 5 (2005), 058101.

    Google Scholar 

  22. S. Lennartz, V. Livina, A. Bunde, and S. Havlin, Long-term memory in earthquakes and the distribution of interoccurrence times. EPL (Europhysics Letters) 81, No 6 (2008), 69001.

    Google Scholar 

  23. W. Li and X. Cai, Statistical analysis of airport network of China. Physical Review E 69, No 4 (2004), 046106.

    Google Scholar 

  24. W. Li, X. Zhang, and G. Hu, How scale-free networks and large-scale collective cooperation emerge in complex homogeneous social systems. Physical Review E 76, No 4 (2007), 045102.

    Google Scholar 

  25. G. Lim, S. Kim, J. Kim, P. Kim, Y. Kang, S. Park, I. Park, S.-B. Park, and K. Kim, Structure of a financial cross-correlation matrix under attack. Physica A: Statistical Mechanics and its Applications 388, No 18 (2006), 3851–3858.

    Google Scholar 

  26. M. Lima, J. A. Tenreiro Machado, and A. C. Costa, A multidimensional scaling analysis of musical sounds based on pseudo phase plane. Abstract and Applied Analysis 2012 (2012), 436108.

    MathSciNet  MATH  Google Scholar 

  27. A. M. Lopes and J. T. Machado, Dynamical behaviour of multi-particle large-scale systems. Nonlinear Dynamics 69, No 3 (2012), 913–925.

    MathSciNet  Google Scholar 

  28. A. M. Lopes and J. Tenreiro Machado, Analysis of temperature timeseries: Embedding dynamics into the mds method. Communications in Nonlinear Science and Numerical Simulation 19, No 4 (2014), 851–871.

    MATH  Google Scholar 

  29. J. A. T. Machado and A. M. Lopes, Analysis and visualization of seismic data using mutual information. Entropy 15, No 9 (2013), 3892–3909.

    MathSciNet  MATH  Google Scholar 

  30. J. T. Machado, And I say to myself: “What a fractional world!”. Fractional Calculus and Applied Analysis 14, No 4 (2011), 635–654; DOI: 10.2478/s13540-011-0037-1; http://link.springer.com/article/10.2478/s13540-011-0037-1.

    MATH  Google Scholar 

  31. D. Makowiec, A. Dudkowska, R. Galaska, and A. Rynkiewicz, Multifractal estimates of monofractality in RR-heart series in power spectrum ranges. Physica A: Statistical Mechanics and its Applications 388, No 17 (2009), 3486–3502.

    Google Scholar 

  32. B. B. Mandelbrot, The Fractal Geometry of Nature. Macmillan (1983).

    Google Scholar 

  33. B. B. Mandelbrot and J. W. Van Ness, Fractional brownian motions, fractional noises and applications. SIAM Review 10, No 4 (1968), 422–437.

    MathSciNet  MATH  Google Scholar 

  34. R. Mategna and H. Stanley, An Introduction to Econophysics. Cambridge University (2000).

  35. Z. M’Chirgui, Small-world or scale-free phenomena in internet: What implications for the next-generation networks? Review of European Studies 4, No 1 (2012), 85–93; DOI: 10.5539/res.v4n1p85.

    Google Scholar 

  36. A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu, Spatial Tessellations- Concepts and Applications of Voronoi Diagrams. John Wiley (2000).

    MATH  Google Scholar 

  37. C. Pinto, A. Mendes Lopes, and J. Machado, A review of power laws in real life phenomena. Communications in Nonlinear Science and Numerical Simulation 17, No 9 (2012), 3558–3578.

    MathSciNet  MATH  Google Scholar 

  38. D. Rind, Complexity and climate. Science 284, No 5411 (1999), 105–107.

    Google Scholar 

  39. T. Robertazzi and P. Sarachik, Self-organizing communication networks. Communications Magazine, IEEE 24, No 1 (1986), 28–33.

    Google Scholar 

  40. M. Sachtjen, B. Carreras, and V. Lynch, Disturbances in a power transmission system. Physical Review E 61, No 5 (2000), 4877.

    Google Scholar 

  41. L. A. Schintler, S. P. Gorman, A. Reggiani, R. Patuelli, A. Gillespie, P. Nijkamp, and J. Rutherford, Complex network phenomena in telecommunication systems. Networks and Spatial Economics 5, No 4 (2005), 351–370.

    MathSciNet  MATH  Google Scholar 

  42. P. Sen, S. Dasgupta, A. Chatterjee, P. Sreeram, G. Mukherjee, and S. Manna, Small-world properties of the indian railway network. Physical Review E 67, No 3 (2003), 036106.

    Google Scholar 

  43. D. Sornette and V. Pisarenko, Fractal plate tectonics. Geophysical Research Letters 30, No 3 (2003), 1105.

    Google Scholar 

  44. S. Stein, M. Liu, E. Calais, and Q. Li, Mid-continent earthquakes as a complex system. Seismological Research Letters 80, No 4 (2009), 551–553.

    Google Scholar 

  45. S. H. Strogatz, Exploring complex networks. Nature 410, No 6825 (2001), 268–276.

    MATH  Google Scholar 

  46. J. Tenreiro Machado, Accessing complexity from genome information. Communications in Nonlinear Science and Numerical Simulation 17, No 6 (2012), 2237–2243.

    Google Scholar 

  47. J. Tenreiro Machado and A. M. Lopes, Dynamical analysis of the global warming. Mathematical Problems in Engineering 2012 (2012), Article ID 971641 (12 p).

  48. J. Tenreiro Machado and A. M. Lopes, The persistence of memory. Nonlinear Dynamics, Online first (Aug. 2014); DOI 10.1007/s11071-014-1645-1.

    MATH  Google Scholar 

  49. D. L. Turcotte and B. D. Malamud, 14 earthquakes as a complex system. International Geophysics 81, Part A (2002), 209–227, IV.

    Google Scholar 

  50. J. Wang, Optimized scale-free networks against cascading failures. International J. of Modern Physics C 23, No 11 (2012), 1250075 (12p).

    Google Scholar 

  51. Z. Wu, L. A. Braunstein, V. Colizza, R. Cohen, S. Havlin, and H. E. Stanley, Optimal paths in complex networks with correlated weights: The worldwide airport network. Physical Review E 74, No 5 (2006), 056104.

    Google Scholar 

  52. W.-B. Zhang, Theory of complex systems and economic dynamics. Nonlinear Dynamics, Psychology, and Life Sciences 6, No 2 (2002), 83–101.

    Google Scholar 

  53. C. Zhou, L. Zemanová, G. Zamora, C. C. Hilgetag, and J. Kurths, Hierarchical organization unveiled by functional connectivity in complex brain networks. Physical Review Letters 97, No 23 (2006), 238103.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. A. Tenreiro Machado.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Machado, J.A.T., Lopes, A.M. Analysis of Natural and Artificial Phenomena Using Signal Processing and Fractional Calculus. FCAA 18, 459–478 (2015). https://doi.org/10.1515/fca-2015-0029

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1515/fca-2015-0029

MSC 2010

Keywords

Navigation