[go: up one dir, main page]

Skip to main content
Log in

DC conduction mechanism in plasma polymerized vinylene carbonate thin films prepared by glow discharge technique

  • Transport in Polymers
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Electrical glow discharge technique was employed for the preparation of plasma polymerized vinylene carbonate (PPVC) thin films of aluminum/thin film/aluminum sandwich structure at room temperature by a parallel plate capacitively coupled reactor. The structural investigation of the monomer VC and PPVC was performed by Fourier transform infrared spectroscopy. The current density-voltage characteristics follow a power law of the form J α V n, where n has different values. In the low voltage region 0.85 < n < 1.00 and those in the high voltage region lie between 1.30 < n < 1.75, indicating Ohmic current conduction in the low voltage region and non-Ohmic conduction in the high voltage region. In addition, at higher temperature the current density increased significantly revealing a temperature dependence of the current density. Theoretically calculated values and experimental results of Schottky and Poole-Frenkel coefficients show that the most probable conduction mechanism in the PPVC thin films is of Schottky type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. H. Yasuda, Plasma Polymerization (Acad. Press, Orlando, 1985).

    Google Scholar 

  2. Plasma Deposition, Treatment and Etching of Polymers, Ed. by R. d’Agostino (Academic Press, San Diego, CA, 1990).

    Google Scholar 

  3. F. F. Shi and J. M. S. Rev, Macromol. Chem. Phys. C36(4), 795 (1996).

    CAS  Google Scholar 

  4. M. S. Silverstein and I. Visoly-Fisher, Polymer 43, 11 (2002).

    Article  CAS  Google Scholar 

  5. H. Biederman and Y. Osada, “Plasma Chemistry of Polymers,” Advance in Polymer Science 95, 57 (1990).

    Google Scholar 

  6. J. M. Tibbitt, A. T. Bell, and M. Shen, J. Macromol. Sci.-Chem. A10, 519 (1976).

    Article  CAS  Google Scholar 

  7. G. Sawa, O. Ito, S. Morita, and M. Ieda, J. Polym. Sci. Polym. Phys. Ed. 12, 1231 (1974).

    Article  CAS  Google Scholar 

  8. H. Muguruma, Tr. Anal. Chem. 19, 433 (2007).

    Google Scholar 

  9. M. Nakamura, L. Sugimoto, and H. Kuwano, Sens. Actuators B: Chem. 33, 122 (1998).

    Article  Google Scholar 

  10. N. Guermat, A. Bellel, S. Sahli, Y. Segui, and P. Raynaud, Thin Solid Films 517, 4455 (2009).

    Article  CAS  Google Scholar 

  11. W. K. Kipnusu, G. Katana, C. M. Migwi, I. V. S. Rathore, and J. R. Sangoro, Int. J. Biomats. Article 2009 ID 548406 (2009).

  12. S. Nespurek, O. Zmeskal, and J. Sworakowski, Thin Solid Films 516, 8949 (2008).

    Article  CAS  Google Scholar 

  13. R. S. Gulalkari, Y. G. Bakale, D. K. Burghate, and V. S. Deogaonkar, Pramana-J. Phys. 69, 485 (2007).

    Article  CAS  Google Scholar 

  14. S. H. Deshmukh, D. K. Burghate, V. P. Akhare, V. S. Deogaonkar, P. T. Deshmukh, and M. S. Deshmukh, Bull. Mater. Sci. 30, 51 (2007).

    Article  CAS  Google Scholar 

  15. A. B. M. Shah Jalal, S. Ahmed, A. H. Bhuiyan, and M. Ibrahim, Thin Solid Films 295, 125 (1997).

    Article  Google Scholar 

  16. H. Akther and A. H. Bhuiyan, Thin Solid Films 488, 93 (2005).

    Article  CAS  Google Scholar 

  17. P. Pipinys, A. Rimeika, and V. Lapeika, J. Phys. D: Appl. Phys. 37, 828 (2004).

    Article  CAS  Google Scholar 

  18. X. Zhang, T. J. Richardson, J. K. Pugh, and P. N. Ross, J. Electrochem. Soc. 148(12), A1341–A1345 (2001).

    Article  Google Scholar 

  19. G. R. Slayton, J. W. Simmons, and J. H. Goldstein, J. Chem. Phys. 22(10), 1678 (1954).

    Google Scholar 

  20. H. Hu, W. Kong, H. Li, H. Huang, and L. Chen, Electrochem. Comm. 6, 126 (2004).

    Article  CAS  Google Scholar 

  21. L. K. Dorris, E. J. Boggs, A. Danti, and L. L. Altpeter, J. Chem. Phys. 46(3), 1191 (1967).

    Article  CAS  Google Scholar 

  22. M. R. Silverstein, C. G Bassler, and C. T. Morrill, Spectrometric Identification of Organic Compounds (John Wiley and Sons, New York, 1981).

    Google Scholar 

  23. N. F. Mott and R. W. Gurney, Electronic Processes in Ionic Crystals (Clarendon Press, Oxford, 1940), p. 168.

    Google Scholar 

  24. J. G. Simmons, “Electronic Conduction Through Thin Insulating Films”, in Handbook of Thin Film Technology, Ed. by L. I. Maissel and R. Glang (McGraw-Hill, New York, 1970), p. 1425.

    Google Scholar 

  25. Po-Tsun Liu, T. C. Chang, Shuo-Ting Yau, Chun-Huai Li, and S. M. Sze, J. Electrochem. Soc. 150(2), F7–F10 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. H. Bhuiyan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Majumder, S., Bhuiyan, A.H. DC conduction mechanism in plasma polymerized vinylene carbonate thin films prepared by glow discharge technique. Polym. Sci. Ser. A 53, 85–91 (2011). https://doi.org/10.1134/S0965545X11010081

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X11010081

Keywords

Navigation