Abstract
Multi-messenger astrophysics, a long-anticipated extension to traditional multiwavelength astronomy, has emerged over the past decade as a distinct discipline providing unique and valuable insights into the properties and processes of the physical Universe. These insights arise from the inherently complementary information carried by photons, gravitational waves, neutrinos and cosmic rays about individual cosmic sources and source populations. This complementarity is the reason why multi-messenger astrophysics is much more than just the sum of the parts. In this Review article, we survey the current status of multi-messenger astrophysics, highlighting some exciting results, and discussing the major follow-up questions they have raised. Key recent achievements include the measurement of the spectrum of ultrahigh-energy cosmic rays out to the highest observable energies; the discovery of the diffuse high-energy neutrino background; the first direct detections of gravitational waves and the use of gravitational waves to characterize merging black holes and neutron stars in strong-field gravity; and the identification of the first joint electromagnetic plus gravitational wave and electromagnetic plus high-energy neutrino multi-messenger sources. We discuss the rationales for the next generation of multi-messenger observatories, and outline a vision of the most likely future directions for this exciting and rapidly growing field.
Key points
-
Besides the traditional electromagnetic observations, multi-messenger astrophysics uses the information about the astrophysical Universe provided by the gravitational, weak and strong forces. These new channels provide untapped, qualitatively different and complementary types of information, making previously hidden objects visible.
-
Diffuse backgrounds of high-energy neutrinos (HENs) with energies from ~10 TeV to PeV, ultrahigh-energy cosmic rays (UHECRs) at energies up to ~1020 eV and γ-rays with energies between MeV and ~TeV have been measured, or upper limits have been provided, by Cherenkov detectors, satellites and ground-based air shower arrays.
-
Gravitational waves from merging stellar mass black hole and neutron star binaries have been detected at frequencies in the ~10 Hz to ~1 kHz range with laser interferometric gravitational wave detectors.
-
The sources of the diffuse UHECR and HEN backgrounds remain unknown, although a γ-ray-flaring blazar has been tentatively identified with the observed HENs. Although up to ~85% of the γ-ray background can be attributed to blazars, it appears that at most 30% of the HEN background has the same origin.
-
The natural physical connection between high-energy cosmic ray interactions and the resulting very-high-energy neutrinos and γ-rays can provide clues about their unknown astrophysical sources. Although less direct, the connection with gravitational wave emission is expected to provide important information about supermassive black hole populations and dynamics.
-
The advanced gravitational wave detectors will soon be able to detect hundreds of binary mergers up to ~Gpc distances, but electromagnetic counterpart searches rely primarily on the aging space-based facilities Swift and Fermi, currently operating well beyond their design lifetimes. There is an urgent need for a new generation of electromagnetic detectors, extending the range of frequencies.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$99.00 per year
only $8.25 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Aartsen, M. G. et al. First observation of PeV-energy neutrinos with icecube. Phys. Rev. Lett. 111, 021103 (2013).
IceCube Collaboration Evidence for high-energy extraterrestrial neutrinos at the IceCube detector. Science 342, 1242856 (2013).
Auger collaboration Highlights from the Pierre Auger Observatory (ICRC17). Preprint at https://arxiv.org/abs/1710.09478 (2017).
Abbott, B. P. et al. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016).
Pierre Auger Collaboration The Pierre Auger Cosmic Ray Observatory. Nucl. Instrum. Methods Phys. Res. A 798, 172–213 (2015).
Abbasi, R. et al. Observation of the GZK cutoff by the HiRes experiment. Phys. Rev. Lett. 100, 101101 (2008).
Greisen, K. End to the cosmic-ray spectrum? Phys. Rev. Lett. 16, 748–750 (1966).
Zatsepin, G. T. & Kuz’min, V. A. Upper limit of the spectrum of cosmic rays. Sov. J. Exp. Theor. Phys. Lett. 4, 78 (1966).
Gerasimova, N. M. & Rozental, I. L. Influence of the nuclear photoeffect on the primary cosmic ray spectrum. Sov. Phys. J. Exp. Theor. Phys. 14, 350 (1962).
Aab, A. et al. Evidence for a mixed mass composition at the’ankle’ in the cosmic-ray spectrum. Phys. Lett. B 762, 288–295 (2016).
Gora, D. (for the Pierre Auger Collaboration) The Pierre Auger observatory: review of latest results and perspectives. Preprint at ArXiv https://arxiv.org/abs/1811.00343 (2018).
Petrera, S. Recent results from the Pierre Auger observatory. Preprint at ArXiv https://arxiv.org/abs/1903.00529 (2019).
Kawai, H. et al. Telescope array experiment. Nucl. Phys. B Proc. Suppl. 175, 221–226 (2008).
Telescope Array Collaboration et al. Mass composition of ultra-high-energy cosmic rays with the telescope array surface detector data. Preprint at ArXiv https://arxiv.org/abs/1808.03680 (2018).
AbuZayyad, T. et al. The energy spectrum of cosmic rays at the highest energies. JPS Conf. Proc. 19, 011003 (2018).
IceCube Collaboration. et al. First year performance of the IceCube neutrino telescope. Astropart. Phys. 26, 155–173 (2006).
Kistler, M. D. & Laha, R. Multi-PeV signals from a new astrophysical neutrino flux beyond the glashow resonance. Phys. Rev. Lett. 120, 241105 (2018).
Halzen, F. High-energy neutrino astrophysics. Nat. Phys. 13, 232–238 (2017).
Ahlers, M. & Halzen, F. Opening a new window onto the universe with IceCube. Prog. Part. Nucl. Phys. 102, 73–88 (2018).
IceCube Collaboration et al. The IceCube neutrino observatory — contributions to ICRC 2017 part I: searches for the sources of astrophysical neutrinos. Preprint at ArXiv https://arxiv.org/abs/1710.01179 (2017).
Illuminati, G. Latest results from the ANTARES neutrino telescope and prospects for KM3NeT-ARCA. Nuovo Cimento C 41, 134 (2019).
Baikal-GVD Collaboration et al. Baikal-GVD: status and prospects. Preprint at ArXiv https://arxiv.org/abs/1808.10353 (2018).
Allison, P. et al. Constraints on the diffuse high-energy neutrino flux from the third flight of ANITA. Preprint at ArXiv https://arxiv.org/abs/1803.02719 (2018).
Aab, A. et al. Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory. Phys. Rev. D 91, 092008 (2015).
Abbott, B. P. et al. LIGO: the Laser Interferometer Gravitational-Wave Observatory. Rep. Prog. Phys. 72, 076901 (2009).
Acernese, F. et al. Advanced Virgo: a second-generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015).
The LIGO Scientific Collaboration & the Virgo Collaboration. GWTC-1: a gravitational-wave transient catalog of compact binary mergers observed by LIGO and Virgo during the first and second observing runs. Preprint at ArXiv https://arxiv.org/abs/1811.12907 (2018).
Connaughton, V. et al. Fermi GBM observations of LIGO gravitational wave event GW150914. Preprint at https://arxiv.org/abs/1602.03920 (2016).
Thompson, D. J. Space detectors for gamma rays (100 MeV–100 GeV): from EGRET to Fermi LAT. C. R. Phys. 16, 600–609 (2015).
Montaruli, T. Gamma-rays and their future. Preprint at ArXiv https://arxiv.org/abs/1902.10484 (2019).
Salesa Greus, F. Gamma-ray astronomy with the HAWC observatory. In Proc. XXXVIII Polish Astronomical Society Meeting Vol. 7 (ed. Rozanska, A.) 316–321 (Polish Astronomical Society, 2018).
Casanova, S. Highlights from the HAWC telescope. In Fourteenth Marcel Grossmann Meeting — MG14 (eds Bianchi, M., Jansen, R. T. & Ruffini, R.) 3303–3306 (World Scientific, 2018).
Davis, R. Nobel lecture: a half-century with solar neutrinos. Rev. Mod. Phys. 75, 985–994 (2003).
Koshiba, M. Nobel lecture: birth of neutrino astrophysics. Rev. Mod. Phys. 75, 1011–1020 (2003).
Hirata, K. et al. Observation of a neutrino burst from the supernova SN1987A. Phys. Rev. Lett. 58, 1490–1493 (1987).
Alexeyev, E. N., Alexeyeva, L. N., Krivosheina, I. V. & Volchenko, V. I. Detection of the neutrino signal from SN 1987A in the LMC using the INR Baksan underground scintillation telescope. Phys. Lett. B 205, 209–214 (1988).
Haines, T. et al. Neutrinos from SN1987a in the IMB detector. Nucl. Instrum. Methods Phys. Res. A 264, 28–31 (1988).
Ackermann, M. et al. The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV. Astrophys. J. 799, 86 (2015).
Ackermann, M. Resolving the extragalactic γ-ray background above 50 GeV with the Fermi large area telescope. Phys. Rev. Lett. 116, 151105 (2016).
Fang, K. & Murase, K. Linking high-energy cosmic particles by black-hole jets embedded in large-scale structures. Nat. Phys. 14, 396–398 (2018).
Murase, K. & Waxman, E. Constraining high-energy cosmic neutrino sources: implications and prospects. Phys. Rev. D 94, 103006 (2016).
Murase, K., Ahlers, M. & Lacki, B. C. Testing the hadronuclear origin of PeV neutrinos observed with IceCube. Phys. Rev. D 88, 121301 (2013).
Murase, K., Guetta, D. & Ahlers, M. Hidden cosmic-ray accelerators as an origin of TeV–PeV cosmic neutrinos. Phys. Rev. Lett. 116, 071101 (2016).
Ahlers, M. & Murase, K. Probing the galactic origin of the IceCube excess with gamma rays. Phys. Rev. D 90, 023010 (2014).
Abbasi, R. et al. An absence of neutrinos associated with cosmic-ray acceleration in γ-ray bursts. Nature 484, 351–354 (2012).
Aartsen, M. G. et al. Search for prompt neutrino emission from gamma-ray bursts with IceCube. Astrophys. J. Lett. 805, L5 (2015).
Aartsen, M. G. et al. Constraints on minute-scale transient astrophysical neutrino sources. Preprint at ArXiv https://arxiv.org/abs/1807.11402 (2018).
Mészáros, P. & Waxman, E. TeV neutrinos from successful and choked gamma-ray bursts. Phys. Rev. Lett. 87, 171102–17110 (2001).
Murase, K. & Ioka, K. TeV–PeV neutrinos from low-power gamma-ray burst jets inside stars. Phys. Rev. Lett. 111, 121102 (2013).
Abbott, B. et al. Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Phys. Rev. D 72, 042002 (2005).
Abbott, B. et al. Astrophysically triggered searches for gravitational waves: status and prospects. Class. Quantum Gravity 25, 114051 (2008).
Kanner, J. et al. LOOC UP: locating and observing optical counterparts to gravitational wave bursts. Class. Quantum Gravity 25, 184034 (2008).
Abbott, B. et al. Implications for the origin of GRB 070201 from LIGO observations. Astrophys. J. 681, 1419–1430 (2008).
Abbott, B. P. et al. Gravitational waves and gamma-rays from a binary neutron star merger: GW170817 and GRB 170817 A. Astrophys. J. Lett. 848, L13 (2017).
The LIGO Scientific Collaboration et al. Properties of the binary neutron star merger GW170817. Phys. Rev. X 9, 011001 (2019).
The LIGO Scientific Collaboration et al. GW170817: measurements of neutron star radii and equation of state. Phys. Rev. Lett. 121, 161101 (2018).
Troja, E. et al. The X-ray counterpart to the gravitational wave event GW 170817. Preprint at ArXiv https://arxiv.org/abs/1710.05433 (2017).
Coulter, D. A. et al. Swope supernova survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science 358, 1556–1558 (2017).
Kasliwal, M. M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science 358, 1559–1565 (2017).
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, L12 (2017).
Margutti, R. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/Virgo GW170817. V. Rising X-ray emission from an off-axis jet. Astrophys. J. 848, L20 (2017).
Weiss, R. LIGO and the discovery of gravitational waves, I: Nobel lecture, December 8, 2017. Ann. Phys. 531, 1800349 (2019).
Barish, B. C. LIGO and gravitational waves II: Nobel lecture, December 8, 2017. Ann. Phys. 531, 1800357 (2019).
Thorne, K. S. LIGO and gravitational waves, III: Nobel lecture, December 8, 2017. Ann. Phys. 531, 1800350 (2019).
IceCube Collaboration et al. Multimessenger observations of a flaring blazar coincident with high-energy neutrino IceCube-170922A. Science 361, eaat1378 (2018).
Mirzoyan, R. First-time detection of VHE gamma rays by MAGIC from a direction consistent with the recent EHE neutrino event IceCube-170922A. Astron. Telegr. 10817 (2017).
Keivani, A. et al. A multimessenger picture of the flaring blazar TXS 0506+056: implications for high-energy neutrino emission and cosmic ray acceleration. Astrophys. J. 864, 84 (2018).
Fox, D. B. et al. Joint swift XRT and NuSTAR observations of TXS 0506+056. Astron. Telegr. 10845 (2017).
Padovani, P., Oikonomou, F., Petropoulou, M., Giommi, P. & Resconi, E. TXS 0506+056, the first cosmic neutrino source, is not a BL Lac. Mon. Not. R. Astron. Soc. 484, L104–L108 (2019).
IceCube Collaboration Neutrino emission from the direction of the blazar TXS 0506+056 prior to the IceCube-170922A alert. Science 361, 147–151 (2018).
Gao, S., Fedynitch, A., Winter, W. & Pohl, M. Modelling the coincident observation of a high-energy neutrino and a bright blazar flare. Nat. Astron. 3, 88–92 (2019).
Cerruti, M. et al. Leptohadronic single-zone models for the electromagnetic and neutrino emission of TXS 0506+056. Mon. Not. R. Astron. Soc. 483, L12–L16 (2019).
Aartsen, M. G. et al. The contribution of Fermi-2LAC blazars to diffuse TeV–PeV neutrino flux. Astrophys. J. 835, 45 (2017).
Perna, R., Lazzati, D. & Giacomazzo, B. Short gamma-ray bursts from the merger of two black holes. Astrophys. J. Lett. 821, L18 (2016).
Murase, K., Kashiyama, K., Mészáros, P., Shoemaker, I. & Senno, N. Ultrafast outflows from black hole mergers with a minidisk. Astrophys. J. Lett. 822, L9 (2016).
Bartos, I. et al. Gravitational-wave localization alone can probe origin of stellar-mass black hole mergers. Nat. Commun. 8, 831 (2017).
Ford, K. E. S. et al. AGN (and other) astrophysics with gravitational wave events. Preprint at https://arxiv.org/abs/1903.09529 (2019).
Albert, A. et al. Search for multimessenger sources of gravitational waves and high-energy neutrinos with advanced LIGO during its first observing run, ANTARES, and IceCube. Astrophys. J. 870, 134 (2019).
Bird, S. et al. Did LIGO detect dark matter? Phys. Rev. Lett. 116, 201301 (2016).
Magee, R. & Hanna, C. Disentangling the potential dark matter origin of LIGO’s black holes. Preprint at https://arxiv.org/abs/1706.04947 (2017).
Carr, B. Primordial black holes as dark matter and generators of cosmic structure. Preprint at ArXiv https://arxiv.org/abs/1901.07803 (2019).
Bartos, I., Finley, C., Corsi, A. & Márka, S. Observational constraints on multimessenger sources of gravitational waves and high-energy neutrinos. Phys. Rev. Lett. 107, 251101 (2011).
Ando, S. et al. Colloquium: multimessenger astronomy with gravitational waves and high-energy neutrinos. Rev. Mod. Phys. 85, 1401–1420 (2013).
Kimura, S. S., Murase, K., Mészáros, P. & Kiuchi, K. High-energy neutrino emission from short gamma-ray bursts: prospects for coincident detection with gravitational waves. Astrophys. J. Lett. 848, L4 (2017).
Kimura, S. S. et al. Transejecta high-energy neutrino emission from binary neutron star mergers. Phys. Rev. D 98, 043020 (2018).
Hooper, D., Linden, T. & Vieregg, A. Active galactic nuclei and the origin of icecube’s diffuse neutrino flux. Preprint at ArXiv https://arxiv.org/abs/1810.02823 (2018).
Murase, K., Oikonomou, F. & Petropoulou, M. Blazar flares as an origin of high-energy cosmic neutrinos? Astrophys. J. 865, 124 (2018).
The LIGO Scientific Collaboration & The Virgo Collaboration Binary black hole population properties inferred from the first and second observing runs of advanced LIGO and Advanced Virgo. Preprint at ArXiv https://arxiv.org/abs/1811.12940 (2018).
IceCube Collaboration, Pierre Auger Collaboration & Telescope Array Collaboration. Search for correlations between the arrival directions of IceCube neutrino events and ultrahigh-energy cosmic rays detected by the Pierre Auger observatory and the telescope array. Jour. Cosmol. Astro-Ppart. Phys. 1, 037 (2016).
Moharana, R. & Razzaque, S. Angular correlation of cosmic neutrinos with ultrahigh-energy cosmic rays and implications for their sources. J. Cosmol. Astropart. Phys. 8, 014 (2015).
Aloisio, R., Berezinsky, V. & Blasi, P. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition. J. Cosmol. Astropart. Phys. 2014, 020 (2014).
Alves Batista, R., de Almeida, R. M., Lago, B. & Kotera, K. Cosmogenic photon and neutrino fluxes in the Auger era. J. Cosmol. Astropart. Phys. 1, 002 (2019).
Murase, K. & Fukugita, M. Energetics of high-energy cosmic radiations. Phys. Rev. D 99, 063012 (2019).
Radice, D. et al. Binary neutron star mergers: mass ejection, electromagnetic counterparts, and nucleosynthesis. Astrophys. J. 869, 130 (2018).
Glas, R., Just, O., Janka, H. T. & Obergaulinger, M. Three-dimensional core-collapse supernova simulations with multidimensional neutrino transport compared to the ray-by-ray-plus approximation. Astrophys. J. 873, 45 (2019).
Radice, D., Morozova, V., Burrows, A., Vartanyan, D. & Nagakura, H. Characterizing the gravitational wave signal from core-collapse supernovae. Astrophys. J. 876, L9 (2019).
Seckel, D. & Stanev, T. Neutrinos: the key to UHE cosmic rays. Phys. Rev. Lett. 95, 141101 (2005).
Kotera, K. & Olinto, A. V. The astrophysics of ultrahigh-energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011).
Globus, N., Allard, D., Parizot, E. & Piran, T. Probing the extragalactic cosmic-ray origin with gamma-ray and neutrino backgrounds. Astrophys. J. 839, L22 (2017).
Gorham, P. W. et al. Observation of an unusual upward-going cosmic-ray-like event in the third flight of ANITA. Preprint at ArXiv https://arxiv.org/abs/1803.05088 (2018).
Alvarez-Muñiz, J. et al. Comprehensive approach to tau-lepton production by high-energy tau neutrinos propagating through the Earth. Phys. Rev. D 97, 023021 (2018).
Romero-Wolf, A. et al. Upward-pointing cosmic-ray-like events observed with ANITA. Preprint at ArXiv https://arxiv.org/abs/1810.00439 (2018).
Connolly, A., Allison, P. & Banerjee, O. On ANITA’s sensitivity to long-lived, charged massive particles. Preprint at ArXiv https://arxiv.org/abs/1807.08892 (2018).
Fox, D. B. et al. The ANITA anomalous events as signatures of a beyond standard model particle, and supporting observations from IceCube. Preprint at ArXiv https://arxiv.org/abs/1809.09615 (2018).
Dagoneau, N., Cordier, B., Schanne, S. & Gros, A. Detection capability of ultra-long gamma-ray bursts with the ECLAIRs telescope aboard the SVOM mission under development. In 42nd COSPAR Scientific Assembly Vol. 42 E1.17–46–18 (2018).
Zhang, D. et al. Energy response of GECAM gamma-ray detector based on LaBr3:Ce and SiPM array. Nucl. Instrum. Methods Phys. Res. A 921, 8–13 (2019).
Yuan, W. et al. Einstein Probe — a small mission to monitor and explore the dynamic X-ray universe. Preprint at ArXiv https://arxiv.org/abs/1506,07735 (2015).
Sagiv, I. et al. Science with a wide-field UV transient explorer. Astron. J. 147, 79 (2014).
Yacobi, L. et al. The gamma-ray transient monitor for ISS-TAO: new directional capabilities. Proc. SPIE 10699, 106995U (2018).
Patterson, M. T. et al. The Zwicky Transient Facility alert distribution system. Publ. Astron. Soc. Pac. 131, 018001 (2019).
Kochanek, C. S. et al. The All-Sky Automated Survey for Supernovae (ASAS-SN) light curve server v1.0. Publ. Astron. Soc. Pac. 129, 104502 (2017).
Cherenkov Telescope Array Consortium et al. Science with the Cherenkov Telescope Array. Preprint at ArXiv https://arxiv.org/abs/1709.07997 (2017).
Di Sciascio, G. & LHAASO Collaboration The LHAASO experiment: from gamma-ray astronomy to cosmic rays. Nucl. Part. Phys. Proc. 279, 166–173 (2016).
LSST Science Collaboration et al. Science-driven optimization of the LSST observing strategy. Preprint at ArXiv https://arxiv.org/abs/1708.04058 (2017).
McPherson, A. M. et al. Square Kilometer Array project status report. Proc. SPIE 10700, 107000Y (2018).
Sanders, G. H. The Thirty Meter Telescope (TMT): an international observatory. J. Astrophys. Astron. 34, 81–86 (2013).
Varela, A. M. et al. European extremely large telescope site characterization III: ground meteorology. Publ. Astron. Soc. Pac. 126, 412–431 (2014).
Johns, M. et al. Giant Magellan Telescope: overview. Proc. SPIE 8444, 84441H (2012).
Nandra, K. in The X-ray Universe 2011 (eds Ness, J.-U. & Ehle, M.) 022 (2011).
Amati, L. et al. The THESEUS space mission concept: science case, design and expected performances. Adv. Space Res. 62, 191–244 (2018).
Moiseev, A. & AMEGO Team All-Sky Medium Energy Gamma-ray Observatory (AMEGO). Int. Cosm. Ray Conf. 35, 798–803 (2017).
Predehl, P. et al. eROSITA on SRG. Proc. SPIE 9905, 99051K (2016).
IceCube-Gen2 Collaboration et al. The IceCube neutrino observatory — contributions to ICRC 2017 part VI: IceCube-Gen2, the next generation neutrino observatory. Preprint at ArXiv https://arxiv.org/abs/1710.01207 (2017).
The KM3NeT Collaboration et al. Sensitivity of the KM3NeT/ARCA neutrino telescope to point-like neutrino sources. Preprint at ArXiv https://arxiv.org/abs/1810.08499 (2018).
Baikal-GVD Collaboration et al. Baikal-GVD: status and prospects. Preprint at ArXiv https://arxiv.org/abs/1808.10353 (2018).
Hyper-Kamiokande Proto-Collaboration et al. Hyper-kamiokande design report. Preprint at ArXiv https://arxiv.org/abs/1805.04163 (2018).
Migenda, J. & Hyper-Kamiokande Proto-Collaboration Astroparticle physics in hyper-kamiokande. In Proc. European Physical Society Conference on High Energy Physics. 5–12 July, 20 (2017).
Barwick, S. W. et al. Radio detection of air showers with the ARIANNA experiment on the Ross Ice Shelf. Astropart. Phys. 90, 50–68 (2017).
Allison, P. et al. Performance of two askaryan radio array stations and first results in the search for ultrahigh energy neutrinos. Phys. Rev. D 93, 082003 (2016).
GRAND Collaboration et al. The Giant Radio Array for Neutrino Detection (GRAND): science and design. Preprint at ArXiv https://arxiv.org/abs/1810.09994 (2018).
Olinto, A. V. et al. POEMMA: probe of extreme multi-messenger astrophysics. Int. Cosm. Ray Conf. 301, 542 (2017).
Nepomuk Otte, A. Trinity: an air-shower imaging system for the detection of cosmogenic neutrinos. Preprint at ArXiv https://arxiv.org/abs/1811.09287 (2018).
Veberic, D. (ed.) The Pierre Auger Observatory: Contributions to the 35th International Cosmic Ray Conference (ICRC 2017) (2017).
Sagawa, H. & Telescope Array Collaboration Telescope array extension: TAx4. In 34th International Cosmic Ray Conference (ICRC2015) Vol. 34 657 (2015).
Casolino, M. et al. KLYPVE-EUSO: science and UHECR observational capabilities. Proc. Sci. ICRC2017, 368 (2018).
Winchen, T. et al. Cosmic ray physics with the LOFAR radio telescope. Preprint at ArXiv https://arxiv.org/abs/1903.08474 (2019).
Seo, E. S. et al. Cosmic ray energetics and mass for the international space station (ISS-CREAM). Adv. Space Res. 53, 1451–1455 (2014).
Zhang, S. N. et al. The high energy cosmic-radiation detection (HERD) facility onboard China’s space station. Proc. SPIE 9144, 91440X (2014).
Fujii, T. et al. The FAST project — a next generation UHECR observatory. In European Physical Journal Web of Conferences Vol. 136 02015 (2017).
Gaisser, T. K., Stanev, T. & Tilav, S. Cosmic ray energy spectrum from measurements of air showers. Front. Phys. 8, 748–758 (2013).
Abbott, B. P. et al. Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA. Living Rev. Relativ. 21, 3 (2018).
Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).
Sathyaprakash, B. et al. Scientific objectives of einstein telescope. Class. Quantum Gravity 29, 124013 (2012).
Abbott, B. P. et al. Exploring the sensitivity of next generation gravitational wave detectors. Class. Quantum Gravity 34, 044001 (2017).
Klein, A. et al. Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016).
Schutz, K. & Ma, C.-P. Constraints on individual supermassive black hole binaries from pulsar timing array limits on continuous gravitational waves. Mon. Not. R. Astron. Soc. 459, 1737–1744 (2016).
Hobbs, G. & Dai, S. A review of pulsar timing array gravitational wave research. Preprint at ArXiv https://arxiv.org/abs/1707.01615 (2017).
Arzoumanian, Z. et al. The NANOGrav 11 year data set: pulsar-timing constraints on the stochastic gravitational-wave background. Astrophys. J. 859, 47 (2018).
Keivani, A., Ayala, H. & DeLaunay, J. Astrophysical multimessenger observatory network (AMON): science, infrastructure, and status. Preprint at ArXiv https://arxiv.org/abs/1708.04724 (2017).
Ayala Solares, H. A. et al. The astrophysical multimessenger observatory network (AMON). Preprint at ArXiv https://arxiv.org/abs/1903.08714 (2019).
Turley, C. F. et al. A coincidence search for cosmic neutrino and gamma-ray emitting sources using IceCube and Fermi-LAT public data. Astrophys. J. 863, 64 (2018).
Countryman, S. et al. Low-latency algorithm for multi-messenger astrophysics (LLAMA) with gravitational-wave and high-energy neutrino candidates. Preprint at ArXiv https://arxiv.org/abs/1901.05486 (2019).
Schutz, B. F. Gravitational-wave astronomy: delivering on the promises. Phil. Trans. R. Soc. Lond. Ser. A 376, 20170279 (2018).
Mészáros, P. Astrophysical sources of high-energy neutrinos in the IceCube era. Annu. Rev. Nucl. Part. Sci. 67, 45–67 (2017).
Shibata, M., Kiuchi, K. & Sekiguchi, Y.-i General relativistic viscous hydrodynamics of differentially rotating neutron stars. Phys. Rev. D 95, 083005 (2017).
Easter, P. J., Lasky, P. D., Casey, A. R., Rezzolla, L. & Takami, K. Computing fast and reliable gravitational waveforms of binary neutron star merger remnants. Preprint at ArXiv https://arxiv.org/abs/1811.11183 (2018).
Parsotan, T., López-Cámara, D. & Lazzati, D. Photospheric emission from variable engine gamma-ray burst simulations. Astrophys. J. 869, 103 (2018).
van Eerten, H. Gamma-ray burst afterglow blast waves. Int. J. Mod. Phys. D 27, 1842002–1842314 (2018).
Senno, N., Murase, K. & Mészáros, P. Choked jets and low-luminosity gamma-ray bursts as hidden neutrino sources. Phys. Rev. D 93, 083003 (2016).
Hotokezaka, K., Beniamini, P. & Piran, T. Neutron star mergers as sites of r-process nucleosynthesis and short gamma-ray bursts. Int. J. Mod. Phys. D 27, 1842005 (2018).
Biehl, D., Boncioli, D., Fedynitch, A. & Winter, W. Cosmic ray and neutrino emission from gamma-ray bursts with a nuclear cascade. Astron. Astrophys. 611, A101 (2018).
Lu, J.-S., Li, Y.-F. & Zhou, S. Getting the most from the detection of galactic supernova neutrinos in future large liquid-scintillator detectors. Phys. Rev. D 94, 023006 (2016).
Beacom, J. F. The diffuse supernova neutrino background. Annu. Rev. Nucl. Part. Sci. 60, 439–462 (2010).
Tamborra, I. & Murase, K. Neutrinos from supernovae. Space Sci. Rev. 214, 31 (2018).
Wild, W. Cherenkov telescope array (CTA): building the world’s largest ground-based gamma-ray observatory. Proc. SPIE 10700, 107000X (2018).
Design concepts for the Cherenkov Telescope Array CTA: an advanced facility for ground-based high-energy gamma-ray astronomy. Experimental Astronomy 32, 193–316 (2011).
Spiering, C. High energy neutrino astronomy: where do we stand, where do we go?. Physics of Particles and Nuclei 49, 497–507 (2018).
Kimura, S. S., Murase, K. & Mészáros, P. Super-knee cosmic rays from galactic neutron star merger remnants. Astrophys. J. 866, 51 (2018).
Guépin, C., Kotera, K., Barausse, E., Fang, K. & Murase, K. Ultra-high energy cosmic rays and neutrinos from tidal disruptions by massive black holes. Preprint at ArXiv https://arxiv.org/abs/1711.11274 (2017).
Biehl, D., Boncioli, D., Lunardini, C. & Winter, W. Tidally disrupted stars as a possible origin of both cosmic rays and neutrinos at the highest energies. https://arxiv.org/abs/1711.03555 (2017).
Senno, N., Murase, K. & Meszaros, P. High-energy neutrino flares from X-ray bright and dark tidal disruptions events. https://arxiv.org/abs/1612.00918 (2016).
Wang, X.-Y. & Liu, R.-Y. Tidal disruption jets of supermassive black holes as hidden sources of cosmic rays: explaining the IceCube TeV-PeV neutrinos. https://arxiv.org/abs/1512.08596 (2015).
Klein, A. et al. Science with the space-based interferometer eLISA: supermassive black hole binaries. Phys. Rev. D 93, 024003 (2016).
Murase, K. & Bartos, I. High-energy multi-messenger transient astrophysics. Preprint in ArXiv https://arxiv.org/abs/1907.12506 (2019).
Acknowledgements
The authors thank S. Coutu, D. Cowen, M. Mostafá and B. Sathyaprakash for useful discussions and comments.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Glossary
- Neutron stars
-
The remnant of a core-collapse supernova from a star in the ~8–25 M⊙ mass range, whose central core of mass ~0.5–2.0 M⊙ collapsed to a radius of ~10 km consisting mainly of neutrons.
- Stellar mass black holes
-
Thought to arise in core-collapse supernova from stars ≳25 M⊙, whose collapsed core has a mass greater than the maximum allowed for stable neutron star, resulting instead in a black hole of a neutron star.
- Active galactic nuclei
-
A type of galaxies whose nuclear region, harbouring an accreting massive black hole, is so bright that it outshines the rest of the galaxy.
- Gamma-ray bursts
-
A sudden, brief, extremely luminous sources of mainly γ-rays.
- Supernova
-
An intense stellar explosion, leading to a rapid brightening of the optical emission by more than ten orders of magnitude, followed by a gradual dimming. There are two basic subtypes, core-collapse supernovae and type Ia (nuclear deflagration) supernovae.
- Blazars
-
A type of active galactic nucleus where accretion to the central massive black hole leads to ejection of relativistic plasma jet pointing close to the line of sight to the external observer.
- Air Cherenkov imaging telescopes
-
A steerable telescope measuring secondary optical photons produced by high-energy γ-rays impacting the upper Earth atmosphere.
- Core-collapse supernova
-
The end result of the evolution of a star of mass 8 that has exhausted its nuclear fuel burning capacity, leading to the gravitational collapse of its inner core and the ejection of its outer envelope.
- Short GRB
-
A short gamma-ray burst, confirmed recently to be due to the merger of a binary neutron star; also expected from neutron star–black hole binary mergers.
- r-Process
-
The abbreviation of ‘rapid neutron capture nuclear process’, whereby a nucleus rapidly increases its atomic number by repeatedly capturing neutrons.
- Air shower array
-
An array of detectors measuring the secondary particles or photons produced by a primary cosmic ray hitting Earth’s atmosphere.
- Supermassive black holes
-
A black hole in the range 105 to 1010 M⊙, usually at the centre of a galaxy.
Rights and permissions
About this article
Cite this article
Mészáros, P., Fox, D.B., Hanna, C. et al. Multi-messenger astrophysics. Nat Rev Phys 1, 585–599 (2019). https://doi.org/10.1038/s42254-019-0101-z
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s42254-019-0101-z
This article is cited by
-
The Milky Way shines in high-energy neutrinos
Nature Reviews Physics (2023)
-
Enhancing PINNs for solving PDEs via adaptive collocation point movement and adaptive loss weighting
Nonlinear Dynamics (2023)
-
Computational challenges for multimodal astrophysics
Nature Computational Science (2022)
-
Tidal disruption events and high-energy neutrino coincidences
Nature Reviews Physics (2022)
-
The design and implementation of GECAM satellite payload performance monitoring software
Radiation Detection Technology and Methods (2022)