Abstract
The crystal lattice type is one of the dominant factors for controlling the mechanical behavior of high-entropy alloys (HEAs). For example, the yield strength at room temperature varies from 300 MPa for the face-centered-cubic (fcc) structured alloys, such as the CoCrCuFeNiTi x system, to about 3,000 MPa for the body-centered-cubic (bcc) structured alloys, such as the AlCoCrFeNiTi x system. The values of Vickers hardness range from 100 to 900, depending on lattice types and microstructures. As in conventional alloys with one or two principal elements, the addition of minor alloying elements to HEAs can further alter their mechanical properties, such as strength, plasticity, hardness, etc. Excessive alloying may even result in the change of lattice types of HEAs. In this report, we first review alloying effects on lattice types and properties of HEAs in five Al-containing HEA systems: Al x CoCrCuFeNi, Al x CoCrFeNi, Al x CrFe1.5MnNi0.5, Al x CoCrFeNiTi, and Al x CrCuFeNi2. It is found that Al acts as a strong bcc stabilizer, and its addition enhances the strength of the alloy at the cost of reduced ductility. The origins of such effects are then qualitatively discussed from the viewpoints of lattice-strain energies and electronic bonds. Quantification of the interaction between Al and 3d transition metals in fcc, bcc, and intermetallic compounds is illustrated in the thermodynamic modeling using the CALculation of PHAse Diagram method.







Similar content being viewed by others
References
K. Lu, Science 328, 319 (2010).
B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A. Struct. Mater. 375, 213 (2004).
J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004).
Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).
Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534 (2008).
O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw, Intermetallics 18, 1758 (2010).
Y. Zhang, X. Yang, and P.K. Liaw, JOM 64, 830 (2012).
M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).
F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628 (2013).
O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle, Acta Mater. 61, 1545 (2013).
C. Zhu, Z.P. Lu, and T.G. Nieh, Acta Mater. 61, 2993 (2013).
Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw, Sci. Rep. 3, 1455 (2013).
W. Guo, W. Dmowski, J.-Y. Noh, P. Rack, P. Liaw, and T. Egami, Metall. Mater. Trans. A 44, 1994 (2013).
T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang, Int. J. Miner. Metall. Mater. 20, 549 (2013).
B.A. Welk, R.E.A. Williams, G.B. Viswanathan, M.A. Gibson, P.K. Liaw, and H.L. Fraser, Ultramicroscopy (in press)
M.A. Laktionova, E.D. Tabchnikova, Z. Tang, and P.K. Liaw, Low Temp. Phys. 39, 630 (2013).
O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward, J. Alloys Compd. 509, 6043 (2011).
O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).
C.P. Lee, C.C. Chang, Y.Y. Chen, J.W. Yeh, and H.C. Shih, Corros. Sci. 50, 2053 (2008).
C.P. Lee, Y.Y. Chen, C.Y. Hsu, J.W. Yeh, and H.C. Shih, Thin Solid Films 517, 1301 (2008).
P.K. Huang, J.W. Yeh, T.T. Shun, and S.K. Chen, Adv. Eng. Mater. 6, 74 (2004).
G. Grimvall, Thermophysical Properties of Materials (Amsterdam: Elsevier, 1999).
M.S. Lucas, G.B. Wilks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, and E. Karapetrova, Appl. Phys. Lett. 100, 251907 (2012).
C.-J. Tong, M.-R. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, and S.-Y. Chang, Metall. Mater. Trans. A 36, 1263 (2005).
C.-J. Tong, Y.-L. Chen, J.-W. Yeh, S.-J. Lin, S.-K. Chen, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Metall. Mater. Trans. A 36, 881 (2005).
R. Sriharitha, B.S. Murty, and R.S. Kottada, Intermetallics 32, 119 (2013).
H.P. Chou, Y.S. Chang, S.K. Chen, and J.W. Yeh, Mater. Sci. Eng. B 163, 184 (2009).
Y.-F. Kao, S.-K. Chen, T.-J. Chen, P.-C. Chu, J.-W. Yeh, and S.-J. Lin, J. Alloys Compd. 509, 1607 (2011).
W.-R. Wang, W.-L. Wang, S.-C. Wang, Y.-C. Tsai, C.-H. Lai, and J.-W. Yeh, Intermetallics 26, 44 (2012).
C. Li, M. Zhao, J.C. Li, and Q. Jiang, J. Appl. Phys. 104, 113504 (2008).
Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yeh, J. Alloys Compd. 488, 57 (2009).
Y.-F. Kao, T.-D. Lee, S.-K. Chen, and Y.-S. Chang, Corros. Sci. 52, 1026 (2010).
C. Li, J.C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 504, S515 (2010).
X. Yang, Y. Zhang, and P.K. Liaw, Proc. Eng. 36, 292 (2012).
O. Senkov, J. Scott, S. Senkova, F. Meisenkothen, D. Miracle, and C. Woodward, J. Mater. Sci. 47, 4062 (2012).
O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward, Mater. Sci. Eng. A. Struct. Mater. 565, 51 (2013).
O.N. Senkov and C.F. Woodward, Mater. Sci. Eng. A 529, 311 (2011).
W.H. Wang, Prog. Mater Sci. 57, 487 (2012).
J.W. Qiao, S.G. Ma, E.W. Huang, C.P. Chuang, P.K. Liaw, and Y. Zhang, Mater. Sci. Forum 688, 419 (2011).
S. Singh, N. Wanderka, B.S. Murty, U. Glatzel, and J. Banhart, Acta Mater. 59, 182 (2011).
C.W. Tsai, M.H. Tsai, J.W. Yeh, and C.C. Yang, J. Alloys Compd. 490, 160 (2010).
K. Zhang and Z. Fu, Intermetallics 28, 34 (2012).
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, Q.J. Zhang, and J. Shi, Mater. Sci. Eng. A 508, 214 (2009).
Y.P. Wang, B.S. Li, M.X. Ren, C. Yang, and H.Z. Fu, Mater. Sci. Eng. A 491, 154 (2008).
L.H. Wen, H.C. Kou, J.S. Li, H. Chang, X.Y. Xue, and L. Zhou, Intermetallics 17, 266 (2009).
S. Guo, C. Ng, and C.T. Liu, J. Alloys Compd. 557, 77 (2013).
S.-T. Chen, W.-Y. Tang, Y.-F. Kuo, S.-Y. Chen, C.-H. Tsau, T.-T. Shun, and J.-W. Yeh, Mater. Sci. Eng. A 527, 5818 (2010).
J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, and Y.S. Huang, Wear 261, 513 (2006).
Z. Liu, S. Guo, X. Liu, J. Ye, Y. Yang, X.-L. Wang, L. Yang, K. An, and C.T. Liu, Scripta Mater. 64, 868 (2011).
K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, J. Alloys Compd. 485, L31 (2009).
C.-C. Tung, J.-W. Yeh, T.-T. Shun, S.-K. Chen, Y.-S. Huang, and H.-C. Chen, Mater. Lett. 61, 1 (2007).
S.G. Ma and Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012).
F.J. Wang, Y. Zhang, G.L. Chen, and H.A. Davies, J. Eng. Mater. Tech. Trans. ASME 131 (2009)
Y. Zhang, S. Ma, and J. Qiao, Metall. Mater. Trans. A 1 (2011)
B.D. Cullity and C.D. Graham, Introduction to Magnetic Materials (Hoboken, NJ: Wiley, 2009).
L.C. Tsao, C.S. Chen, and C.P. Chu, Mater. Des. 36, 854 (2012).
K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Phys. Rev. Lett. 102, 175501 (2009).
K.A. Dahmen, Y. Ben-Zion, and J.T. Uhl, Nat. Phys. 7, 554 (2011).
J.P. Sethna, K.A. Dahmen, and C.R. Myers, Nature 410, 242 (2001).
J. Antonaglia, X. Xie, M. Wraith, J. Qiao, Y. Zhang, P.K. Liaw, J.T. Uhl, and K.A. Dahmen (unpublished results).
P.S. Rudman, J. Stringer, R.I. Jaffee, and Battelle Memorial Institute, Phase Stability in Metals and Alloys (New York: McGraw-Hill, 1967).
W. Hume-Rothery, R.E. Smallman, and C.W. Haworth, The Structure of Metals and Alloys (London: Metals & Metallurgy Trust, 1969).
M. Widom, I. Al-Lehyani, and J.A. Moriarty, Phys. Rev. B 62, 3648 (2000).
H. Hsieh, B. Toby, T. Egami, Y. He, S. Poon, and G. Shiflet, J. Mater. Res. 5, 2807 (1990).
K. Ahn, D. Louca, S. Poon, and G. Shiflet, Phys. Rev. B 70, 224103 (2004).
Y.Q. Cheng and E. Ma, Prog. Mater Sci. 56, 379 (2011).
Y. Cheng, E. Ma, and H. Sheng, Phys. Rev. Lett. 102, 245501 (2009).
G.T. de Laissardière and T. Fujiwara, Phys. Rev. B 50, 5999 (1994).
V. Fournée, E. Belin-Ferré, and J.-M. Dubois, J. Phys. 10, 4231 (1998).
V. Fournée, I. Mazin, D.A. Papaconstantopoulos, and E. Belin-Ferré, Philos. Mag. B 79, 205 (1999).
J. Hafner, From Hamiltonians to Phase Diagrams (Cambridge: Cambridge University Press, 1987).
C. Li, J.C. Li, M. Zhao, and Q. Jiang, J. Alloys Compd. 475, 752 (2009).
W.M. Haynes and D.R. Lide, CRC Handbook of Chemistry and Physics: A Ready-Reference Book of Chemical and Physical Data (Boca Raton, FL: CRC Press, 2010).
G.W.C. Kaye and T.H. Laby, Tables of Physical and Chemical Constants (New York: Longman, 1995).
W.W. Porterfield, Inorganic Chemistry: A Unified Approach (San Diego, CA: Academic Press, 1993).
T. Egami, Y. Waseda, and J. Non-Cryst, Solids 64, 113 (1984).
M.-H. Chuang, M.-H. Tsai, W.-R. Wang, S.-J. Lin, and J.-W. Yeh, Acta Mater. 59, 6308 (2011).
K. Zhang and Z. Fu, Intermetallics 22, 24 (2012).
C. Zhang, F. Zhang, S. Chen, and W. Cao, JOM 64, 839 (2012).
F. Boer, Cohesion in Metals: Transition Metal Alloys (Amsterdam: North-Holland, 1988).
X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).
S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).
A. Takeuchi and A. Inoue, Mater. Trans. 46, 2817 (2005).
B. Sundman, B. Jansson, and J. Andersson, CALPHAD 9, 153 (1985).
American Society for Metals, Metals Handbook (Cleveland, OH: The Society, 1990).
A. Inoue, Acta Mater. 48, 279 (2000).
T. Yang, Z. Tang, Y. Zhang, and P.K. Liaw (unpublished results).
S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty, J. Mater. Sci. 45, 5158 (2010).
S. Varalakshmi, M. Kamaraj, and B.S. Murty, Metall. Mater. Trans. A 41, 2703 (2010).
M.A. Meyers, A. Mishra, and D.J. Benson, Prog. Mater Sci. 51, 427 (2006).
A.V. Kuznetsov, D.G. Shaysultanov, N.D. Stepanov, G.A. Salishchev, and O.N. Senkov, Mater. Sci. Eng. A 533, 107 (2012).
Acknowledgements
Zhi Tang, Tengfei Yang, Yanwen Zhang, and Takeshi Egami acknowledge the financial support from the Department of Energy (DOE), Office of Nuclear Energy’s Nuclear Energy University Program (NEUP) grant 00119262, with Drs. R.O. Jensen, L. Tian, and S. Lesica as program managers. Michael C. Gao acknowledges support of the Innovative Processing and Technologies Program of the National Energy Technology Laboratory’s (NETL) Strategic Center for Coal under the RES contract DE-FE-0004000. Haoyan Diao and Peter K. Liaw would like to acknowledge the DOE, Office of Fossil Energy, National Energy Technology Laboratory (DE-FE-0008855), with Mr. V. Cedro as program manager. Yongqiang Cheng is supported by the Scientific User Facilities Division, Office of Basic Energy Sciences, DOE. Karin A. Dahmen and Peter K. Liaw thank the support from the project of DE-FE-0011194 with the program manager, Dr. S. Markovich.
Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tang, Z., Gao, M.C., Diao, H. et al. Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. JOM 65, 1848–1858 (2013). https://doi.org/10.1007/s11837-013-0776-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11837-013-0776-z