Abstract
Advances in agricultural technology have led to the development of active remote sensing equipment that can potentially optimize N fertilizer inputs. The objective of this study was to evaluate a hand-held active remote sensing instrument to estimate yield potential in irrigated maize. This study was done over two consecutive years on two irrigated maize fields in eastern Colorado. At the six- to eight-leaf crop growth stage, the GreenSeeker™ active remote sensing unit was used to measure red and NIR reflectance of the crop canopy. Soil samples were taken before side-dressing from the plots at the time of sensing to determine nitrate concentration. Normalized difference vegetation index (NDVI) was calculated from the reflectance data and then divided by the number of days from planting to sensing, where growing degrees were greater than zero. An NDVI-ratio was calculated as the ratio of the reflectance of an area of interest to that of an N-rich portion of the field. Regression analysis was used to model grain yield. Grain yields ranged from 5 to 24 Mg ha−1. The coefficient of determination ranged from 0.10 to 0.76. The data for both fields in year 1 were modeled and cross-validated using data from both fields for year 2. The coefficient of determination of the best fitting model for year 1 was 0.54. The NDVI-ratio had a significant relationship with observed grain yield (r 2 = 0.65). This study shows that the GreenSeeker™ active sensor has the potential to estimate grain yield in irrigated maize; however, improvements need to be made.



Similar content being viewed by others
References
Aparicio, N., Villegas, D., Araus, J. L., Casadesús, J., & Royo, C. (2002). Relationship between growth traits and spectral vegetation indices in Durum Wheat. Crop Science, 42, 1547–1555.
Báez-González, A. D., Chen, P., Tiscareño-López, M., & Srinivasan, R. (2002). Using satellite and field data with crop growth modeling to monitor and estimate maize yield in Mexico. Crop Science, 42, 1943–1949.
Bausch, W. C., & Duke, H. R. (1996). Remote sensing of plant nitrogen status in corn. Transactions of the American Society Agricultural Engineers, 39(6), 1869–1875.
Bausch, W. C., & Diker, K. (2001). Innovative remote sensing techniques to increase nitrogen use efficiency of corn. Communications in Soil Science and Plant Analysis, 32(7 & 8), 1371–1390.
Blackmer, T. M., Schepers, J. S., & Varvel, G. E. (1994). Light reflectance compared with other nitrogen stress measurements in maize leaves. Agronomy Journal, 86, 934–938.
Bundy, L. G., & Andraski, T. W. (1993). Soil and plant nitrogen availability tests for corn following alfalfa. Journal of Production Agriculture, 6, 200–206.
Bundy, L. G., & Andraski, T. W. (1995). Soil yield potential effects on performance of soil nitrate tests. Journal of Production Agriculture, 8, 561–568.
Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). New York, USA: The Guilford Press.
Dwyer, L. M., Stewart, D. W., Carrigan, L., Ma, B. L., Weaver, P., & Balchini, D. (1999). Guidelines for comparisons among different maize maturity rating systems. Agronomy Journal, 91, 946–949.
Ercoli, L., Mariotti, M., Masom, A., & Massantini, F. (1993). Relationship between nitrogen and chlorophyll content and spectral properties in maize leaves. European Journal of Agronomy, 2, 113–117.
Gauch, H. G., & Zobel, R. W. (1988). Predictive and postdictive success of statistical analysis of yield trials. Theoretical Genetics, 76, 1–10.
Heckman, J. R., Hlubik, W. T., Prostak, D. J., & Paterson, J. W. (1995). Pre-sidedress soil nitrate test for sweet corn. Horticultural Science, 30, 1033–1036.
Inman, D., Khosla, R., & Mayfield, T. (2005). On-the-go active remote sensing for efficient crop nitrogen management. Sensor Review Journal, 25(3), 209–214.
Large, E. C. (1954). Growth stages in cereals. Journal of Plant Pathology, 3, 128–129.
Ma, B. L., Lianne, L. M., Dwyer, M., Costa, C., Cober, E. R., & Morrison, M. J. (2001). Early prediction of soybean yield from canopy reflectance measurements. Agronomy Journal, 93, 1227–1234.
Magdoff, F. R., Ross, D., & Amadon, J. (1984). A soil test for nitrogen availability to maize. Soil Science Society of America Journal, 48, 1301–1304.
Magdoff, F. R. (1991). Understanding the Magdoff pre-sidedress nitrate test for corn. Journal of Production Agriculture, 4, 297–305.
Meisinger, J. J., Bandel, V. A., Angle, J. S., O’Keefe, B. E., & Reynolds, C. M. (1992). Pre-sidedress soil nitrate test evaluation in Maryland. Soil Science Society of America Journal, 56, 1527–1532.
Mulvaney, R. L. (1996). Nitrogen-inorganic forms. In D. L. Sparks et al (Eds.), Methods of soil analysis. Part 3, Chemical methods, Chapter 4 (pp 1146–1162). Madison, WI: Soil Science Society of America.
Neter, J., Kunter, M. H., Nachtscheim, C. J., & Wasserman, W. (1996). Applied linear regression models (4th ed.). Chicago, Il USA: McGraw-Hill/Irwin publishers.
NUE Web 2005. Outline for generating new crop algorithms for N fertilization. Available at: http://www.nue.okstate.edu/Algorithm/Algorithm_Outline.htm. Verified December 12, 2005. Oklahoma State University, Stillwater, OK, USA.
Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.
Raun, W. R., Soile, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., & Schepers, J. S. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93, 131–138.
Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., Thomasson, W. E., & Lukina, E. V. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.
Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., Zhang, H., Scheppers, J. S., & Johnson, G. V. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36, 2759–2781.
Rozas, H. S., Echeverría, H. E., Studdert, G. A., & Domínguez, G. (2000). Evaluation of the pre-sidedress soil nitrogen test for no-tillage maize fertilized at planting. Agronomy Journal, 92, 1176–1183.
SAS Institute (2001). Statistical analysis software version 8. Cary, NC, USA: SAS Institute.
Schepers, J. S., Blackmer, T. M., Wilhelm, W. W., & Resende, M. (1996). Transmittance and reflectance measurements of maize leaves from plants with different nitrogen and water supply. Journal of Plant Physiology, 148, 523–529.
Shanahan, J. F., Schepers, J. S., Francis, D. D., Varvel, G. E., Wilhelm, W. W., Tringe, J. M., Schlemmer, M. R., & Major, D. J. (2001). Use of remote-sensing imagery to estimate corn grain yield. Agronomy Journal, 93, 583–589.
Spellman, D. E., Rongni, A., Westfall, D. G., Waskom, R. M., & Soltanpour, P. N. (1996). Pre-sidedress nitrate soil testing to manage nitrogen fertility in irrigated corn in a semi-arid environment. Communications in Soil Science and Plant Analysis, 27(3&4), 561–574.
Stone, M. L., Soile, J. B., Raun, W. R., Whitney, R. W., Taylor, S. L., & Ringer, J. D. (1996). Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the American Society of Agricultural Engineers, 39(5), 1623–1631.
Thenkabail, P. S., Smith, R. B., & DePauw, E. (2000). Hyperspectral Vegetation Indicies and their relationships with agricultural crop characteristics. Remote Sensing of Environment, 71, 158–182.
Vleeshouwers, L. M., & Jongschaap, R. E. E. (2001). Chlorophyll and nitrogen relations in maize with regards to spectral properties: forcing methods of remote sensing data in crop growth simulation models. Deliverable D06 EU Croma (EVG1–2000–000027). Available online: http://library.wur.nl/wasp/bestanden/LUWPUBRD_00121626_A502_001.pdf. Verified 08/30/2007.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Inman, D., Khosla, R., Reich, R.M. et al. Active remote sensing and grain yield in irrigated maize. Precision Agric 8, 241–252 (2007). https://doi.org/10.1007/s11119-007-9043-z
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-007-9043-z