[go: up one dir, main page]

Skip to main content
Log in

Three-Dimensional Modeling of an Urban Park and Trees by Combined Airborne and Portable On-Ground Scanning LIDAR Remote Sensing

  • Published:
Environmental Modeling & Assessment Aims and scope Submit manuscript

Abstract

In this study, we confirmed the utility of airborne and portable on-ground scanning light detection and ranging (LIDARs) for three-dimensional visualization of an urban park and quantification of biophysical variables of trees in the park. The digital canopy height model (DCHM) and digital terrain model generated from airborne scanning LIDAR data provided precise images of the ground surface and individual tree canopies. The heights of 166 coniferous and broadleaf trees of 11 species in the park were estimated from the DCHM images with slight underestimation (mean error = −0.14 m, RMSE = 0.30 m). Portable on-ground scanning LIDAR provided images of individual trees with detailed features. Tree height and trunk diameter were estimated to be within 0.31 m and 1 cm, respectively, from the on-ground LIDAR images. We combined airborne and on-ground LIDAR images to overcome blind regions and created a complete three-dimensional model of three standing trees. The model allowed not only visual assessment from all viewpoints but also quantitative estimation of canopy volume, trunk volume, and canopy cross-sectional area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Avissar, R. (1996). Potential effects of vegetation on the urban thermal environment. Atmospheric Environment, 30, 437–448.

    Article  CAS  Google Scholar 

  2. Bajaj, C. L., Bernardini, F., & Xu, G. (1995). Automatic reconstruction of surfaces and scalar fields from 3D scans. Proceedings of SIGGRAPH ’95 International Conference on Computer Graphics and Interactive Techniques (pp. 109–118). New York: ACM SIGGRAPH.

  3. Baker, T. J. (1989). Developments and trends in three-dimensional mesh generation. Applied Numerical Mathematics, 5, 275–304.

    Article  Google Scholar 

  4. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., & Taubin, G. (1999). The ball-pivoting algorithm for surface reconstruction. IEEE Transactions on Visualization and Computer Graphics, 5, 349–359.

    Article  Google Scholar 

  5. Besl, P. J., & McKay, N. D. (1992). A method for registration of 3-D shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14, 239–256.

    Article  Google Scholar 

  6. Bishop, I. D., & Rohrmann, B. (2003). Subjective responses to simulated and real environments: A comparison. Landscape and Urban Planning, 65, 261–277.

    Article  Google Scholar 

  7. Caldas, C. H., Chi, S., Teizer, J., & Gong, J. (2006). Intelligent computing and sensing for active safety on construction sites. Lecture Notes in Artificial Intelligence, 4200, 101–108.

    Google Scholar 

  8. Chiesura, A. (2004). The role of urban parks for the sustainable city. Landscape and Urban Planning, 68, 129–138.

    Article  Google Scholar 

  9. Forlani, G., Nardinocchi, C., Scaioni, M., & Zingaretti, P. (2006). Complete classification of raw LIDAR data and 3D reconstruction of buildings. Pattern Analysis and Applications, 8, 357–374.

    Article  Google Scholar 

  10. Gallo, K. P., McNab, A. L., Karl, T. R., Brown, J. F., Hood, J. J., & Tarpley, J. D. (1993). The use of a vegetation index for assessment of the urban heat-island effect. International Journal of Remote Sensing, 20, 2223–2230.

    Article  Google Scholar 

  11. Hosoi, F., & Omasa, K. (2006). Voxel-based 3D modeling of individual trees for estimating leaf area density using high-resolution portable scanning LIDAR. IEEE Transactions on Geoscience and Remote Sensing, 44, 3610–3618.

    Article  Google Scholar 

  12. Hosoi, F., Yoshimi, K., Shimizu, Y., & Omasa, K. (2005). 3-D measurement of trees using a portable scanning LIDAR. Phyton, 45, 497–500.

    Google Scholar 

  13. Hyde, P., Nelson, R., Kimes, D., & Levine, E. (2007). Exploring LiDAR-RaDAR synergy – Predicting aboveground biomass in a southwestern ponderosa pine forest using LiDAR, SAR and InSAR. Remote Sensing of Environment, 106, 28–38.

    Article  Google Scholar 

  14. Jaeger, M., & de Reffye, P. (1992). Basic concepts of computer simulation of plant-growth. Journal of Biosciences, 17, 275–291.

    Article  Google Scholar 

  15. Ji, Z., Liu, L., & Wang, G. (2005). A global Laplacian smoothing approach with feature preservation. Proceedings of the Ninth International Conference on Computer Aided Design and Computer Graphics (pp. 269–274). Hong Kong, China: IEEE.

  16. Kaplan, S., & Kaplan, R. (1989). The experience of nature. A psychological perspective. Cambridge: Cambridge University Press.

    Google Scholar 

  17. Lam, K. C., Ng, S. L., Hui, W. C., & Chan, P. K. (2005). Environmental quality of urban parks and open spaces in Hong Kong. Environmental Monitoring and Assessment, 111, 55–73.

    Article  CAS  Google Scholar 

  18. Lange, E. (2001). The limits of realism: perceptions of virtual landscapes. Landscape and Urban Planning, 54, 163–182.

    Article  Google Scholar 

  19. Lange, R., & Seitz, P. (2001). Solid-state time-of-flight range camera. IEEE Journal of Quantum Electronics, 37, 390–397.

    Article  CAS  Google Scholar 

  20. Lefsky, M. A., Cohen, W. B., Parker, G. G., & Harding, D. J. (2002). LIDAR remote sensing for ecosystem studies. BioScience, 52, 19–30.

    Article  Google Scholar 

  21. Lovell, J. L., Jupp, D. L. B., Culvenor, D. S., & Coops, N. C. (2003). Using airborne and ground-based ranging LIDAR to measure canopy structure in Australian forests. Canadian Journal of Remote Sensing, 29, 607–622.

    Google Scholar 

  22. Maltamo, M., Eerikäinen, K., Pitkänen, J., Hyyppä, J., & Vehmas, M. (2004). Estimation of timber volume and stem density based on scanning laser altimetry and expected tree size distribution functions. Remote Sensing of Environment, 90, 319–330.

    Article  Google Scholar 

  23. Muhar, A. (2001). Three-dimensional modeling and visualization of vegetation for landscape simulation. Landscape and Urban Planning, 54, 5–17.

    Article  Google Scholar 

  24. Murakami, H., Nakagawa, K., Hasegawa, H., Shibata, T., & Iwanami, E. (1999). Change detection of buildings using an airborne laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 54, 148–152.

    Article  Google Scholar 

  25. Næsset, E., Gobakken, T., Holmgren, J., Hyyppä, H., Hyyppä, J., Maltamo, M., et al. (2004). Laser scanning of forest resources: The Nordic experience. Scandinavian Journal of Forest Research, 19, 482–499.

    Article  Google Scholar 

  26. Oggier, T., Lustenberger, F., & Blanc, N. (2006). Miniature 3D TOF camera for real-time imaging. Lecture Notes in Artificial Intelligence, 4021, 212–216.

    Google Scholar 

  27. Omasa, K. (2002). Diagnosis of stomatal response and gas exchange of trees by thermal remote sensing. In K. Omasa, H. Saji, S. Youssefian, & N. Kondo (Eds.), Air pollution and plant biotechnology – prospects for phytomonitoring and phytoremediation (pp. 343–359). Tokyo: Springer.

    Google Scholar 

  28. Omasa, K., Akiyama, Y., Ishigami, Y., & Yoshimi, K. (2000). 3-D remote sensing of woody canopy heights using a scanning helicopter-borne LIDAR system with high spatial resolution. Journal of Remote Sensing Society of Japan, 20, 394–406.

    Google Scholar 

  29. Omasa, K., Hosoi, F., & Konishi, A. (2007). 3D LIDAR imaging for detecting and understanding plant responses and canopy structure. Journal of Experimental Botany, 58, 881–898.

    Article  CAS  Google Scholar 

  30. Omasa, K., Qiu, G. Y., Watanuki, K., Yoshimi, K., & Akiyama, Y. (2003). Accurate estimation of forest carbon stocks by 3-D remote sensing of individual trees. Environmental Science & Technology, 37, 1198–1201.

    Article  CAS  Google Scholar 

  31. Omasa, K., Tobe, K., & Kondo, T. (2002). Absorption of organic and inorganic air pollutants by plants. In K. Omasa, H. Saji, S. Youssefian, & N. Kondo (Eds.), Air pollution and plant biotechnology – prospects for phytomonitoring and phytoremediation (pp. 155–178). Tokyo: Springer.

    Google Scholar 

  32. Omasa, K., Urano, Y., Oguma, H., & Fujinuma, Y. (2002). Mapping of tree position of Larix leptolepis woods and estimation of diameter at breast height (DBH) and biomass of the trees using range data measured by a portable scanning LIDAR. Journal of Remote Sensing Society of Japan, 22, 550–557.

    Google Scholar 

  33. Sequeira, V., Gonçalves, J. G. M., & Ribeiro, M. I. (1995). 3D environment modeling using laser range sensing. Robotics and Autonomous Systems, 16, 81–91.

    Article  Google Scholar 

  34. Shah, S., & Aggarwal, J. K. (1997). Mobile robot navigation and scene modeling using stereo fish-eye lens system. Machine Vision and Applications, 10, 159–173.

    Article  Google Scholar 

  35. Surmann, H., Nüchter, A., & Hertzberg, J. (2003). An autonomous mobile robot with a 3D laser range finder for 3D exploration and digitalization of indoor environments. Robotics and Autonomous Systems, 45, 181–198.

    Article  Google Scholar 

  36. Tanaka, T., Park, H., & Hattori, S. (2004). Measurement of forest canopy structure by a laser plane range-finding method improvement of radiative resolution and examples of its application. Agricultural and Forest Meteorology, 125, 129–142.

    Article  Google Scholar 

  37. Taubin, G. (1995). A signal processing approach to fair surface design. Proceedings of SIGGRAPH ’95 International Conference on Computer Graphics and Interactive Techniques (pp. 351–358). New York: ACM SIGGRAPH.

  38. Ulrich, R. S. (1981). Natural versus urban scenes: Some psychophysiological effects. Environment and Behavior, 13, 523–556.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Omasa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omasa, K., Hosoi, F., Uenishi, T.M. et al. Three-Dimensional Modeling of an Urban Park and Trees by Combined Airborne and Portable On-Ground Scanning LIDAR Remote Sensing. Environ Model Assess 13, 473–481 (2008). https://doi.org/10.1007/s10666-007-9115-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10666-007-9115-5

Keywords