[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Quercetin Attenuates Adhesion Molecule Expression in Intestinal Microvascular Endothelial Cells by Modulating Multiple Pathways

  • Original Article
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

Background

In inflammatory bowel disease, activation of microvascular endothelial cells and adhesion of immune cells are required for the initiation and maintenance of inflammation. We evaluated the effects and mechanisms of quercetin, a flavone identified in a wide variety of dietary sources, in LPS-induced rat intestinal microvascular endothelial cells (RIMVECs).

Methods

RIMVECs were pretreated with quercetin of various concentrations (20, 40 and 80 μM) followed by LPS (10 μg/ml) stimulation. ELISA was used to examine protein levels of intercellular adhesion molecules-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) in the supernatant. Protein levels of Toll-like receptor 4 (TLR4), nuclear transcription factor kappa B (NF-κB) p65, inhibitors of NF-κB (IκB-α), extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK) p38 and signal transducer and activator of transcription (STAT) in cells were measured by Western blot.

Results

Quercetin significantly suppressed protein levels of ICAM-1 and VCAM-1 induced by LPS. Quercetin also inhibited TLR4 expression, NF-κB p65, ERK, JNK and STAT phosphorylation and decreased IκB-α degradation. Moreover, the MAPK p38 signal does not contribute to the anti-inflammatory effects on RIMVECs, although LPS significantly increases its phosphorylation.

Conclusions

These results indicate that quercetin may have an anti-inflammatory effect by inhibiting expression of ICAM-1 and VCAM-1 in RIMVECs by suppressing TLR4, NF-κB, ERK, JNK and STAT but not the p38 signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu TC, Stappenbeck TS. Genetics and pathogenesis of inflammatory bowel disease. Annu Rev Pathol. 2016;11:127–148.

    Article  CAS  Google Scholar 

  2. Saijo HN, Tatsumi S, Arihiro T, et al. Microangiopathy triggers, and inducible nitric oxide synthase exacerbates dextran sulfate sodium-induced colitis. Lab Invest. 2015;95:728–748.

    Article  CAS  Google Scholar 

  3. Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C. Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology. 1997;112:1895–1907.

    Article  CAS  Google Scholar 

  4. Israely E. Molecular signatures of tissue-specific microvascular endothelial cell heterogeneity in organ maintenance and regeneration. Dev Cell. 2013;26:204–219.

    Article  Google Scholar 

  5. Aird WC. Phenotypic heterogeneity of the endothelium. Circ Res. 2007;100:158–173.

    Article  CAS  Google Scholar 

  6. Daniele F, Francesco P. What is the role of cytokines and chemokines in IBD? Inflamm Bowel Dis. 2008;2:S117.

    Google Scholar 

  7. Francescone R, Hou V, Grivennikov SI. Cytokines, IBD, and colitis-associated cancer. Inflamm Bowel Dis. 2015;21:409–418.

    Article  Google Scholar 

  8. Moldoveanu AC, Diculescu M, Braticevici CF. Cytokines in inflammatory bowel disease. Scand J Gastroenterol. 2015;53:118–127.

    Google Scholar 

  9. Itzkowitz SH, Yio X. Inflammation and Cancer IV. Colorectal cancer in inflammatory bowel disease: the role of inflammation. Am J Physiol Gastrointest Liver Physiol. 2004;287:7.

    Article  Google Scholar 

  10. Boer NKD, Bodegraven AAV, Jharap B, De GP, Mulder CJ. Drug Insight: pharmacology and toxicity of thiopurine therapy in patients with IBD. Nat Clin Pract Gastroenterol Hepatol. 2007;4:686–694.

    Article  Google Scholar 

  11. Pérezcano FJ, Castell M. Flavonoids, inflammation and immune system. Nutrients. 2016;8:659–662.

    Article  Google Scholar 

  12. Yao L, Yao JC, Han J, et al. Quercetin, inflammation and immunity. Nutrients. 2016;8:167.

    Article  Google Scholar 

  13. Chen CC, Chow MP, Huang WC, Lin YC, Chang YJ. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol Pharmacol. 2004;66:683–693.

    Article  CAS  Google Scholar 

  14. Manjeet KR, Ghosh B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-α production in murine macrophages. Int J Immunopharmacol. 1999;21:435–443.

    Article  CAS  Google Scholar 

  15. Chang YC, Tsai MH, Sheu WH, Hsieh SC, Chiang AN. The therapeutic potential and mechanisms of action of quercetin in relation to lipopolysaccharide-induced sepsis in vitro and in vivo. PLoS ONE. 2013;8:e80744.

    Article  Google Scholar 

  16. Crespo I, Garcíamediavilla MV, Gutiérrez B, Sánchezcampos S, Tuñón MJ, Gonzálezgallego J. A comparison of the effects of kaempferol and quercetin on cytokine-induced pro-inflammatory status of cultured human endothelial cells. Br J Nutr. 2008;100:968–976.

    Article  CAS  Google Scholar 

  17. Dodda D, Chhajed R, Mishra J. Protective effect of quercetin against acetic acid induced inflammatory bowel disease (IBD) like symptoms in rats: Possible morphological and biochemical alterations. Pharmacol Rep. 2014;66:169–173.

    Article  CAS  Google Scholar 

  18. Duan H, Zhang Y, Xu J, et al. Effect of anemonin on NO, ET-1 and ICAM-1 production in rat intestinal microvascular endothelial cells. J Ethnopharmacol. 2006;104:362–366.

    Article  CAS  Google Scholar 

  19. Klampfer L. Cytokines, inflammation and colon cancer. Curr Cancer Drug Targets. 2011;11:451–466.

    Article  CAS  Google Scholar 

  20. Kasper J, Hermanns MI, Cavelius C, et al. The role of the intestinal microvasculature in inflammatory bowel disease: studies with a modified Caco-2 model including endothelial cells resembling the intestinal barrier in vitro. Int J Nanomed. 2016;11:6353–6364.

    Article  CAS  Google Scholar 

  21. Xavier RJ, Podolsky DK. Unravelling the pathogenesis of inflammatory bowel disease. Nature. 2007;448:427–434.

    Article  CAS  Google Scholar 

  22. Seaman S, Stevens J, Mi YY, Logsdon D, Graffcherry C, Croix BS. Genes that distinguish physiological and pathological angiogenesis. Cancer Cell. 2007;11:539–554.

    Article  CAS  Google Scholar 

  23. Müller AM, Hermanns MI, Cronen C, Kirkpatrick CJ. Comparative study of adhesion molecule expression in cultured human macro- and microvascular endothelial cells. Exp Mol Pathol. 2002;73:171–180.

    Article  Google Scholar 

  24. Hu YS, Lin RY, Bian YF, Fan K, Liu ZJ. Protective effect of Kushenlu on lipopolysaccharide-induced small intestinal inflammation in rats. Int J Pharmacol. 2017;13:473–480.

    Article  Google Scholar 

  25. Suo Z, Liu Y, Ferreri M, et al. Impact of matrine on inflammation related factors in rat intestinal microvascular endothelial cells. J Ethnopharmacol. 2009;125:404–409.

    Article  CAS  Google Scholar 

  26. Binion DG, Rafiee P. Is inflammatory bowel disease a vascular disease? Targeting angiogenesis improves chronic inflammation in inflammatory bowel disease. Gastroenterology. 2009;136:400–403.

    Article  Google Scholar 

  27. Choo BK, Roh SS. Berberine protects against esophageal mucosal damage in reflux esophagitis by suppressing proinflammatory cytokines. Exp Ther Med. 2013;6:663–670.

    Article  CAS  Google Scholar 

  28. Bhaskar S, Sudhakaran PR, Helen A. Quercetin attenuates atherosclerotic inflammation and adhesion molecule expression by modulating TLR-NF-κB signaling pathway. Cell Immunol. 2016;310:131–140.

    Article  CAS  Google Scholar 

  29. Jobin C, Hellerbrand C, Licato LL, Brenner DA, Sartor RB. Mediation by NF-κB of cytokine induced expression of intercellular adhesion molecule 1 (ICAM-1) in an intestinal epithelial cell line, a process blocked by proteasome inhibitors. Gut. 1998;42:779–787.

    Article  CAS  Google Scholar 

  30. Li Z, Zhang DK, Yi WQ, Ouyang Q, Chen YQ, Gan HT. NF-kappaB p65 antisense oligonucleotides may serve as a novel molecular approach for the treatment of patients with ulcerative colitis. Arch Med Res. 2008;39:729–734.

    Article  Google Scholar 

  31. Comalada M, Camuesco D, Sierra S, et al. In vivo quercitrin anti-inflammatory effect involves release of quercetin, which inhibits inflammation through down-regulation of the NF-κB pathway. Eur J Immunol. 2005;35:584–592.

    Article  CAS  Google Scholar 

  32. Cui L, Feng L, Zhang ZH, Jia XB. The anti-inflammation effect of baicalin on experimental colitis through inhibiting TLR4/NF-κB pathway activation. Int Immunopharmacol. 2014;23:294–303.

    Article  CAS  Google Scholar 

  33. Jang J, Ha JH, Chung SI, Yoon Y. Β-catenin regulates NF-κB activity and inflammatory cytokine expression in bronchial epithelial cells treated with lipopolysaccharide. Int J Mol Med. 2014;34:632–638.

    Article  CAS  Google Scholar 

  34. Lucas K, Maes M. Role of the Toll like receptor (TLR) radical cycle in chronic inflammation: possible treatments targeting the TLR4 pathway. Mol Neurobiol. 2013;48:190–204.

    Article  CAS  Google Scholar 

  35. Akira S, Hoshino K, Kaisho T. The role of Toll-like receptors and MyD88 in innate immune responses. J Endotoxin Res. 2000;6:383–387.

    Article  CAS  Google Scholar 

  36. Kawai T, Adachi O, Ogawa T, Takeda K, Akira S. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity. 1999;11:115–122.

    Article  CAS  Google Scholar 

  37. Chen C, Chen YH, Lin WW. Involvement of p38 mitogen-activated protein kinase in lipopolysaccharide-induced iNOS and COX-2 expression in J774 macrophages. Immunology. 1999;97:124–129.

    Article  CAS  Google Scholar 

  38. Liu W, Liu Y, Wang Z, Yu T, Lu Q, Chen H. Suppression of MAPK and NF-κ B pathways by schisandrin B contributes to attenuation of DSS-induced mice model of inflammatory bowel disease. Pharmazie. 2015;70:598–603.

    PubMed  Google Scholar 

  39. Amiot A, Peyrin-Biroulet L. Current, new and future biological agents on the horizon for the treatment of inflammatory bowel diseases. Therap Adv Gastroenterol. 2015;8:66–82.

    Article  Google Scholar 

  40. Endale M, Park SC, Kim S, et al. Quercetin disrupts tyrosine-phosphorylated phosphatidylinositol 3-kinase and myeloid differentiation factor-88 association, and inhibits MAPK/AP-1 and IKK/NF-κB-induced inflammatory mediators production in RAW 264.7 cells. Immunobiology. 2013;218:1452–1467.

    Article  CAS  Google Scholar 

  41. Rasjad IM, Satuman K, Retty R, Malik SG. Quercetin suppresses inflammation by reducing ERK1/2 phosphorylation and NF kappa B activation in leptin-induced human umbilical vein endothelial cells (HUVECs). BMC Res Notes. 2013;6:1–8.

    Article  Google Scholar 

  42. Ying BW, Yang T, Song XB, et al. Quercetin inhibits IL-1 beta-induced ICAM-1 expression in pulmonary epithelial cell line A549 through the MAPK pathways. Mol Biol Rep. 2009;36:1825–1832.

    Article  CAS  Google Scholar 

  43. Slattery ML, Lundgreen A, Kadlubar SA, Bondurant KL, Wolff RK. JAK/STAT/SOCS-signaling pathway and colon and rectal cancer. Mol Carcinog. 2013;52:155–166.

    Article  Google Scholar 

  44. Nunes C, Almeida L, Barbosa RM, Laranjinha J. Luteolin suppresses the JAK/STAT pathway in a cellular model of intestinal inflammation. Food Funct. 2017;8:387.

    Article  CAS  Google Scholar 

  45. Cho YS, Chan HK, Ha TS, Ahn HY. Inhibition of NF-kB and STAT3 by quercetin with suppression of adhesion molecule expression in vascular endothelial cells. Farmacia. 2016;64:668–673.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant no. 31472228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjie Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bian, Y., Liu, P., Zhong, J. et al. Quercetin Attenuates Adhesion Molecule Expression in Intestinal Microvascular Endothelial Cells by Modulating Multiple Pathways. Dig Dis Sci 63, 3297–3304 (2018). https://doi.org/10.1007/s10620-018-5221-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-018-5221-2

Keywords

Navigation