[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Canopy Structure Parameters Derived from Multi-Angular Remote Sensing Data for Terrestrial Carbon Studies

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

Recent studies have highlighted the importance of vegetation structure, both in the context of landscape dynamics and with regard to ecosystem productivity. This paper addresses the feasibility to retrieve information on canopy structure on the basis of quasi-simultaneous multi-spectral and multi-directional remote sensing measurements from space. After a brief summary of both active and passive remote sensing approaches that are commonly used to address vegetation structure retrievals, this contribution focuses on the state-of-the-art in physically based interpretations relating the anisotropy of multi-directional reflectance measurements to the structure and heterogeneity of the underlying surface. New sets of ecology-oriented parameters are identified that permit a geophysical interpretation of the directional signature of the surface leaving radiation field. The availability of such terrestrial surface structure information, at the within-pixel scale and for the entire globe, will undoubtedly lead to better estimates of ecosystem productivity, carbon stocks and fluxes, as well as changes thereof.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Asner, G. P., Braswell, B. H., Schimel, D. S., and Wessman, C. A.: 1998, ‘Ecological research needs from multiangle remote sensing data’, Remote Sens. Environ. 63, 155–165.

    Google Scholar 

  • Barnsley, M. J., Settle, J. J., Cutter, M. Lobb, D., and Teston, F.:2004, ‘The PROBA/CHRIS mission: a low-cost smallsat for hyperspectral, multi-angle, observations of the Earth surface and atmosphere’, IEEE Trans. Geosci. Remote Sens. 42 1512–1520

    Google Scholar 

  • Bonan, G. B.: 1997, ‘Effects of land use on the climate in the United States’, Climatic Change 37, 449–486.

    Google Scholar 

  • Bond, B. J.: 2000, ‘Age related changes in photosynthesis of woody plants’, Trends Plant Sci. 5, 349–353.

    Google Scholar 

  • Borel, C. C. and Gerstl, S. A. W.: 1994, ‘Nonlinear spectral mixing models for vegetative and soil surfaces’, Remote Sens. Environ. 47, 403–416.

    Google Scholar 

  • Bounoua, L., DeFries, R., Collatz, G. J., Sellers, P., and Khan, H.: 2002, ‘Effects of land cover conversion on surface climate’, Climatic Change 52, 29–64.

    Google Scholar 

  • Brown, M. J. and Parker, G. G.: 1994, ‘Canopy light transmittance in a chronosequence of mixed-species deciduous forests’, Canadian J. Forest Res. 24, 1694–1703.

    Google Scholar 

  • Caspersen, J. P., Pacala, S. W., Jenkins, J. C., Hurtt, G. C., Moorcroft, P. R., and Birdsey, R. A.: 2000, ‘Contributions of land-use history to carbon accumulation in U.S. forests’, Science 290, 1148–1150.

    Article  CAS  PubMed  Google Scholar 

  • Caylor, K. K., Dowty, P. R., Shugart, H. H., and Ringrose, S.: 2004. ‘Relationship between small-scale structural variability and simulated vegetation productivity across a regional moisture gradient in southern Africa’, Global Change Biol. 10, 374–382.

    Google Scholar 

  • Centritto, M., Lee, H. and Jarvis, P. G.: 1999, ‘Increased growth in elevated CO2: An early, short-term response?’, Global Change Biol. 5, 623–633.

    Google Scholar 

  • Chen, J. M., Liu, J., Leblanc, S. G., Lacaze, R., and Roujean, J. L.: 2003, ‘Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption’, Remote Sens. Environ. 84 (4), 516–525.

    Google Scholar 

  • Chopping, M. J., Rango, A., Havstad, K. M., Schiebe, F. R., Ritchie, J. C., Schmugge, T. J., French, A. N., Su, L., McKee, L., and Davis, M. R.: 2003, ‘Canopy attributes of desert grassland and transition communities derived from multiangular airborne imagery’, Remote Sens. Environ. 85, 339–354.

    Google Scholar 

  • Conard, S. G., Sukhinin, A. I., Stocks, B. J., and Cahoon, D. R.: 2002, ‘Determining effects of area burned and fire severity on carbon cycling and emission in Siberia’, Climatic Change 55, 197–211.

    Google Scholar 

  • Davis, A. B., Marshak, A., and Wiscombe W.: 1993, ‘Bi-multifractal analysis and multi-affine modelling of non-stationary geophysical processes, application to turbulence and clouds’, Fractals 1, 560–567.

    Google Scholar 

  • Davis, A. B., Marshak, A., Wiscombe, W., and Cahalan, R.: 1994, ‘Multifractal characterization of nonstationarity and intermittency in geophysical fields: Observed, retrieved or simulated’ J. Geophys. Res. 99, 8055–8072.

    Google Scholar 

  • Deschamps, P. Y., Bréon, F. M., Leroy, M., Podaire, A., Sèze G., and Bricaud A.: 1994, ‘The POLDER mission: Instrument characteristics and scientific objectives’ IEEE Trans. Geosci. Remote Sens. 32, 598–615.

    Google Scholar 

  • Diner, D. J., Barge, L. M., Bruegge, C. J., Chrien, T. G., Conel, J. E., Eastwood, M. L., Garcia, J. D., Hernandez, M. A., Kurzweil, C. G., Ledeboer, W. C., Pignatano, N. D., Sarture, C. M., and Smith, B. G.: 1998, ‘The airborne multi-angle imaging spectroradiometer AirMISR instrument: Description and first results’ IEEE Trans. Geosci. Remote Sens. 36, 1339–1349.

    Google Scholar 

  • Diner, D. J., Beckert, J. C., Bothwell, G. W., and Rodriguez, J. I.: 2002, ‘Performance of the MISR instrument during its first 20 months in Earth orbit, IEEE Trans. Geosci. Remote Sens. 40, 1449–1466.

    Google Scholar 

  • Dubayah, R. O. and Drake, J. B.: 2000, ‘Lidar remote sensing for forestry’, J. Foresry 98, 44–46.

    Google Scholar 

  • Gerstl, S. A. W.: 1988, ‘Angular reflectance signature of the canopy hotspot in the optical regime’, 4th Intl. Coll. On Spectral Signatures of Objects in Remote Sensing, Aussois, France, ESA report SP-287, 129pp.

  • Gobron, N. and Lajas, D.: 2002, ‘A new inversion scheme for the RPV model’, Women Sensing the World} special issue of Canadian J. Remote Sens. 28, 156–167.

    Google Scholar 

  • Gobron, N., Pinty, B., Verstraete, M. M., Widlowski, J.-L., and Diner, D. J.: 2002, ‘Uniqueness of multiangular measurements – Part 2: Joint retrieval of vegetation structure and photosynthetic activity from MISR’, IEEE Trans. Geosci. Remote Sens. 40, 1574–1592.

    Google Scholar 

  • Goel, N. S., Qin, W., and Wang, B.: 1997, ‘On the estimation of leaf size and crown geometry for tree canopies from hotspot observations’, J. Geophys. Res., BOREAS special issue, 102 (D24), 29543–29554.

    Google Scholar 

  • Govaerts, Y., Engelsen, B., Pinty, B., and Verstraete, M. M.: 1997, ‘Identification of a particular tropical forest environment on the basis of simulated NOAA-AVHRR reflectance factors’. In Proceedings of the 7th ISPRS International Symposium on Physical Measurements and Signatures in Remote Sensing, Courchevel, 7–11 April 1997, Balkema/Rotterdam/Brookfield, France, pp. 727–734.

  • Hapke, B.: 1981, ‘ Bidirectional reflectance spectroscopy, 1, Theory’, Geophys. Res. 86, 3039–3054.

    Article  Google Scholar 

  • Hobbs, S. E., Ang, W., and Seynat, C.: 1998, ‘Wind and rain effects on SAR backscatter from crops’, in Proceeding of 2nd International workshop on retrieval of bio- and geophysical parameters from SAR data for land applications, ESTEC, The Netherlands, 21–23 October.

  • Knyazikhin, Y., Martonchik, J. V., Diner, D. J., Myneni, R. B., Vertsraete, M. M., Pinty, B., and Gobron, N.: 1999, ‘Estimation of vegetation canopy leaf area index and fraction of absorbed photosynthetically active radiation from atmosphere corrected MISR data’, J. Geophys. Res., 103, 32,239–32,256.

    Google Scholar 

  • Knorr, W., Smith, B., Widlowski, J.-L., Pinty, B., and Gobron, N.: 2004, ‘Combining remote sensing techniques with productivity models: A case study for monitoring carbon stocks in northern European forests’, in Proceedings of the OECD workshop ‘Remote Sensing for Agriculture and the Environment’, Kifissa, Greece, September 17–20, 2002.

  • Kriebel, K. T.: 1978, ‘Measured spectral bidirectional reflection properties of four vegetated surfaces’, Appl. Optics 17, 253–259.

    Article  Google Scholar 

  • Lacaze, R., Chen, J. M., Roujean, J.-L., and Leblanc, S. G.: 2002, ‘Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument’, Remote Sens. Environ. 79, 84–95.

    Google Scholar 

  • Lefsky, M. A.: 1997, ‘Application of Lidar remote sensing to the estimation of forest canopy and stand structure’, PhD dissertation. University of Virginia, Charlottesville, VA.

  • Lefsky, M. A., Cohen, W. B., Parker, G. G., and Harding, D. J.: 2002, ‘Lidar remote sensing for ecosystem studies’, BioSci. 52(1),19–30.

    Google Scholar 

  • Le Toan, T., Beaudoin, A., Riom, I., and Guyon, D.: 1992, ‘Relating forest biomass to SAR data’, IEEE Trans. Geosci. Remote Sens. 30(3), 403–411.

    Google Scholar 

  • Liedloff, A. C., Coughenour, M. B., Ludwig, J. A., and Dyer, R.: 2001, ‘Modelling the trade-off between fire and grazing in a tropical savanna landscape, northern Australia’, Environment International 27, 173–180.

    Google Scholar 

  • Lovell, J. L. and Graetz, R. D.: 2002, ‘Analysis of POLDER-ADEOS data for the Australian continent: the relationship between BRDF and vegetation structure’, Int. J. Remote Sens. 23 (14) 2767–2796.

    Google Scholar 

  • Ludwig, J. A., Coughenour, M. B., Liedloff, A. C., and Dyer, R.: 2001, ‘Modelling the resilience of Australian savanna systems to grazing impacts’, Environment International 27, 162–172.

    Google Scholar 

  • Minnaert, M.: 1941, ‘The reciprocity principle in lunar photometry’, Astrophys. J. 93, 403–410.

    Google Scholar 

  • Nilsson, M.:1996, ‘Estimation of tree heights and stand volume using an airborne Lidar system’, Remote Sens. Environ. 56, 1–7.

    Google Scholar 

  • Pinty, B., Widlowski, J-L., Gobron, N., Verstraete, M. M., and Diner, D. J.: 2002, ‘Uniqueness of multiangular measurements – Part 1: An indicator of subpixel surface heterogeneity from MISR’, IEEE, Trans. Geosci. Remote Sens. 40, 1560–1573.

    Google Scholar 

  • Rahman, H., Pinty, B., and Verstraete, M. M.: 1993, ‘Coupled surface-atmosphere reflectance (CSAR) model. 2. Semiempirical surface model usable with NOAA Advanced Very High Resolution Radiometer data’, J. Geophys. Res. 98, 20,791–20,801.

    Google Scholar 

  • Ross, J.: 1981, ‘The radiation regime and architecture of plant stands’, Dr. W. Junk, The Hague, p. 391.

  • Sarmiento, J. L. and Gruber N.: 2002, ‘Sinks for anthropogenic carbon’, Phys. Today 55, 30–36.

    Google Scholar 

  • Schimel, D. S., House, J. I., Hibbard, K. A., Bousquet, P., Ciais, P., Peylin, P., Braswell, B. H., Apps, M. A., Baker, D., Bondeau, A., Canadell, J., Churkina, G., Cramer, W., Denning, A. S., Field, C. B., Friedlingstein, P., Goodale, C., Heimann, M., Houghton, R. A., Melillo, J. M., Moore, III B., Murdiyarso, D., Noble, I., Pacala, S. W., Prentice, I. C., Raupach, M. R., Rayner, P. J., Scholes, R. J., Steffen, W. L., and Wirth, C.: 2001, ‘Recent pattern and mechanisms of carbon exchange by terrestrial ecosystems’. Nature 414, 169–172.

    Article  CAS  PubMed  Google Scholar 

  • Scholes, R. J. and Parsons, D. A. B. (eds.).: 1997, ‘The Kalahari transect: Research on global change and sustainable development in southern Africa’, IGBP Report 42. Stockholm: IGBP Secretariat, 61 pp.

  • Shuggart, H. H.: 2000, ‘Importance of structure in the longer-term dynamics of landscapes’, J. Geophys. Res. 105, 20065–20075.

    Google Scholar 

  • Stricker, N. C. M., Hahne, A., Smith, D. L., and Delderfield, J.: 1995 ‘ATSR-2: The evolution in its design from ERS-1 to ERS-2’, ESA Bull. 83, 32–37.

    Google Scholar 

  • Tomppo, E.: 2000, ‘Remote sensing requirements to support forest inventories’. in Verstraete, M. M., Menenti, M., and Peltoniemi, J. (eds.), Observing Land from Space : Science, Customer and Technology; Advances in Global Change Research, vol.4, pp. 207–248.

  • Treuhaft, R. N. and Siquera, P. R.: 2000, ‘Vertical structure of vegetated land surfaces from interferometric and polarimetric radar’, Radio Sci. 35, 141–177.

    Google Scholar 

  • Widlowski, J.-L., Pinty, B., Gobron, N., Verstraete, M. M., and Davis, A. B.: 2001a, ‘Characterization of surface heterogeneity detected at the MISR/TERRA sub-pixel scale’, Geophys. Res. Lett. 24, 4639–4642.

    Google Scholar 

  • Widlowski, J-L., Pinty, B., Gobron, N., and Verstraete, M. M.: 2001b, ‘Detection and characterization of boreal coniferous forests from remote sensing data’, J. Geophys. Res., 106, 33,405–33,419.

    Google Scholar 

  • Widlowski, J.-L.: 2002, ‘Extracting quantitative sub-pixel heterogeneity information form optical remote sensing data’, Technical Report EUR 20236 EN, EC Joint Research Centre, Ispra, Italy.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J-L. WIDLOWSKI.

Rights and permissions

Reprints and permissions

About this article

Cite this article

WIDLOWSKI, JL., PINTY, B., GOBRON, N. et al. Canopy Structure Parameters Derived from Multi-Angular Remote Sensing Data for Terrestrial Carbon Studies. Climatic Change 67, 403–415 (2004). https://doi.org/10.1007/s10584-004-3566-3

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10584-004-3566-3

Keywords

Navigation