Abstract
Atrial fibrillation (AF) is the most common sustained arrhythmia and is associated with significant morbidity and mortality. Timely diagnosis of the arrhythmia, particularly transient episodes, can be difficult since patients may be asymptomatic. In this study, we describe a robust algorithm for automatic detection of AF based on the randomness, variability and complexity of the heart beat interval (RR) time series. Specifically, we employ a new statistic, the Turning Points Ratio, in combination with the Root Mean Square of Successive RR Differences and Shannon Entropy to characterize this arrhythmia. The detection algorithm was tested on two databases, namely the MIT-BIH Atrial Fibrillation Database and the MIT-BIH Arrhythmia Database. These databases contain several long RR interval series from a multitude of patients with and without AF and some of the data contain various forms of ectopic beats. Using thresholds and data segment lengths determined by Receiver Operating Characteristic (ROC) curves we achieved a high sensitivity and specificity (94.4% and 95.1%, respectively, for the MIT-BIH Atrial Fibrillation Database). The algorithm performed well even when tested against AF mixed with several other potentially confounding arrhythmias in the MIT-BIH Arrhythmia Database (Sensitivity = 90.2%, Specificity = 91.2%).




Similar content being viewed by others
References
Aytemir, K., S. Aksoyek, A. Yildirir, N. Ozer, and A. Oto. Prediction of atrial fibrillation recurrence after cardioversion by P wave signal-averaged electrocardiography. Int. J. Cardiol. 70:15–21, 1999.
Benjamin, E. J., P. A. Wolf, R. B. D’Agostino, H. Silbershatz, W. B. Kannel, and D. Levy. Impact of atrial fibrillation on the risk of death: the Framingham Heart Study. Circulation 98:946–952, 1998.
Clavier, L., J. M. Boucher, R. Lepage, J. J. Blanc, and J. C. Cornily. Automatic P-wave analysis of patients prone to atrial fibrillation. Med. Biol. Eng. Comput. 40:63–71, 2002.
Defaye, P., F. Dournaux, and E. Mouton. Prevalence of supraventricular arrhythmias from the automated analysis of data stored in the DDD pacemakers of 617 patients: the AIDA study. The AIDA Multicenter Study Group. Automatic Interpretation for Diagnosis Assistance. Pacing Clin. Electrophysiol. 21:250–255, 1998.
Dotsinsky, I. Atrial wave detection algorithm for discovery of some rhythm abnormalities. Physiol. Meas. 28:595–610, 2007.
Duverney, D., J. Gaspoz, V. Pichot, F. Roche, R. Brion, A. Antoniadis, and J. Barthélémy. High accuracy of automatic detection of atrial fibrillation using wavelet transform of heart rate intervals. Pacing Clin. Electrophysiol. 25:457–462, 2002.
Ehrlich, J. R., K. Schadow, K. Steul, G. Q. Zhang, C. W. Israel, and S. H. Hohnloser. Prediction of early recurrence of atrial fibrillation after external cardioversion by means of P wave signal-averaged electrocardiogram. Z. Kardiol. 92:540–546, 2003.
Fukunami, M., T. Yamada, M. Ohmori, K. Kumagai, K. Umemoto, A. Sakai, N. Kondoh, T. Minamino, and N. Hoki. Detection of patients at risk for paroxysmal atrial fibrillation during sinus rhythm by P wave-triggered signal-averaged electrocardiogram. Circulation 83:162–169, 1991.
Goldberg, R. J. To the framingham data, turn, turn, turn. Circulation 119:1189–1191, 2009.
Goldberger, A. L., L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C. K. Peng, and H. E. Stanley. PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101:E215–E220, 2000.
Heeringa, J., D. A. van der Kuip, A. Hofman, J. A. Kors, G. van Herpen, B. H. Stricker, T. Stijnen, G. Y. Lip, and J. C. Witteman. Prevalence, incidence and lifetime risk of atrial fibrillation: the Rotterdam study. Eur. Heart J. 27:949–953, 2006.
Humphries, K. H., C. R. Kerr, S. J. Connolly, G. Klein, J. A. Boone, M. Green, R. Sheldon, M. Talajic, P. Dorian, and D. Newman. New-onset atrial fibrillation: sex differences in presentation, treatment, and outcome. Circulation 103:2365–2370, 2001.
Israel, C. W., G. Gronefeld, J. R. Ehrlich, Y.-G. Li, and S. H. Hohnloser. Long-term risk of recurrent atrial fibrillation as documented by an implantable monitoring device: implications for optimal patient care. J. Am. Coll. Cardiol. 43:47–52, 2004.
Kerr, C., J. Boone, S. Connolly, M. Greene, G. Klein, R. Sheldon, and M. Talajic. Follow-up of atrial fibrillation: the initial experience of the Canadian Registry of Atrial Fibrillation. Eur. Heart J. 17(Suppl C):48–51, 1996.
Kinlay, S., J. W. Leitch, A. Neil, B. L. Chapman, D. B. Hardy, and P. J. Fletcher. Cardiac event recorders yield more diagnoses and are more cost-effective than 48-hour Holter monitoring in patients with palpitations. A controlled clinical trial. Ann. Intern. Med. 124:16–20, 1996.
Michalkiewicz, D., M. Dziuk, G. Kaminski, R. Olszewski, M. Cholewa, A. Cwetsch, and L. Markuszewski. Detection of patients at risk for paroxysmal atrial fibrillation (PAF) by signal averaged P wave, standard ECG and echocardiography. Pol. Merkur. Lekarski 20:69–72, 2006.
Murgatroyd, F. D., B. Xie, X. Copie, I. Blankoff, A. J. Camm, and M. Malik. Identification of atrial fibrillation episodes in ambulatory electrocardiographic recordings: validation of a method for obtaining labeled r-r interval files. Pacing Clin. Electrophysiol. 18:1315–1320, 1995.
Opolski, G., P. Scislo, J. Stanislawska, G. Aleksander, R. Steckiewicz, and A. Torbicki. Detection of patients at risk for recurrence of atrial fibrillation after successful electrical cardioversion by signal-averaged P-wave ECG. Int. J. Cardiol. 60:181–185, 1997.
Page, R. L., W. E. Wilkinson, W. K. Clair, E. A. McCarthy, and E. L. Pritchett. Asymptomatic arrhythmias in patients with symptomatic paroxysmal atrial fibrillation and paroxysmal supraventricular tachycardia. Circulation 89:224–227, 1994.
Portet, F. P wave detector with PP rhythm tracking: evaluation in different arrhythmia contexts. Physiol. Meas. 29:141–155, 2008.
Rawles, J. M., and E. Rowland. Is the pulse in atrial fibrillation irregularly irregular? Br. Heart J. 56:4–11, 1986.
Reddy, S., B. Young, Q. Xue, B. Taha, D. Brodnick, and J. Steinberg. Review of methods to predict and detect atrial fibrillation in post-cardiac surgery patients. J. Electrocardiol. 32(Suppl):23–28, 1999.
Roche, F., J. M. Gaspoz, A. Da Costa, K. Isaaz, D. Duverney, V. Pichot, F. Costes, J. R. Lacour, and J. C. Barthélémy. Frequent and prolonged asymptomatic episodes of paroxysmal atrial fibrillation revealed by automatic long-term event recorders in patients with a negative 24-hour Holter. Pacing Clin. Electrophysiol. 25:1587–1593, 2002.
Sarkar, S., D. Ritscher, and R. Mehra. A detector for a chronic implantable atrial tachyarrhythmia monitor. IEEE Trans. Biomed. Eng. 55:1219–1224, 2008.
Stein, K. M., J. Walden, N. Lippman, and B. B. Lerman. Ventricular response in atrial fibrillation: random or deterministic? Am. J. Physiol. 277:H452–H458, 1999.
Tateno, K., and L. Glass. A method for detection of atrial fibrillation using RR intervals. Comput. Cardiol. 27:391–394, 2000.
Tateno, K., and L. Glass. Automatic detection of atrial fibrillation using the coefficient of variation and density histograms of RR and ΔRR intervals. Med. Biol. Eng. Comput. 39:664–671, 2001.
Wolf, P. A., R. D. Abbott, and W. B. Kannel. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke 22:983–988, 1991.
Zar, J. H. Serial randomness of measurements: nonparametric testing. In: Biostatistical Analysis, 4th edn. Prentice-Hall, 1999, pp. 587–588.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Dash, S., Chon, K.H., Lu, S. et al. Automatic Real Time Detection of Atrial Fibrillation. Ann Biomed Eng 37, 1701–1709 (2009). https://doi.org/10.1007/s10439-009-9740-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10439-009-9740-z