[go: up one dir, main page]

Skip to main content
Log in

A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

Investigation of antihypertensive and antioxidant properties of fruit and leaf extracts from four varieties (giant white, small white, stripped and pink) of guava (Psidium guajava L.) in vitro was the focus of this study. Consequently, methanol/1 M HCl (20:1 v/v) extraction of fruit and leaf of the guava varieties were carried out. Thereafter, the extracts were assayed for their angiotensin I converting enzyme (ACE) inhibitory effect, total phenol and flavonoid contents, reducing property, radicals (DPPH, ABTS•+, hydroxyl and nitric oxide) scavenging ability, Fe2+ chelating ability, and inhibition of Fe2+ and Sodium nitroprusside (SNP) induced lipid peroxidation reactions (in vitro). Furthermore, the phenolic constituents of the extracts were characterised with gas chromatography (GC). The results showed that all the extracts significantly (P < 0.05) inhibited ACE activity, scavenged (DPPH, ABTS•+, nitric oxide and hydroxyl) radicals, chelated Fe2+ and also inhibited Fe2+ and SNP induced lipid peroxidation in rat heart (in vitro). Nevertheless, the pink guava variety had the highest ACE inhibitory and antioxidant properties. In addition, Rosmarinic acid, eugenol, carvacrol, catechin and caffeic acid were the dominant phenolics found in the extracts. The ACE inhibitory effects and antioxidant properties of the guava extracts, which correlates significantly with their phenolic constituents, could largely contribute to their antihypertensive properties as obtained in traditional medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ademiluyi AO, Oboh G (2013) Soybean phenolic-rich extract inhibit key-enzymes linked to type 2 diabetes (a-amylase and a-glucosidase) and hypertension (angiotensin 1 converting enzyme) in vitro. Exp Toxicol Pathol 65(3):305–309

    Article  CAS  PubMed  Google Scholar 

  • Ademiluyi AO, Oboh G, Aragbaiye FP, Oyeleye SI, Ogunsuyi OB (2015a) Antioxidant properties and in vitro α-amylase and α-glucosidase inhibitory properties of phenolics constituents from different varieties of Corchorus spp. J Taibah Univ Med Sci 10:278–287

    Google Scholar 

  • Ademiluyi AO, Oyeleye SI, Oboh G (2015b) Biological activities, antioxidant properties and phytoconstituents of essential oil from sweet basil (Ocimum basilicum L.) leaves. Comp Clin Pathol. doi:10.1007/s00580-015-2163-3

  • Ajila CM, Prasada UJS (2008) Protection against hydrogen peroxide induced oxidative damage in rat erythrocytes by Mangifera indica L. peel extract. Food Chem Toxicol 46:303–309

    Article  CAS  PubMed  Google Scholar 

  • Arnao MB (2011) Some methodological problems in the determination of antioxidant activity using chromogen radicals: a practical case. Trends Food Sci Technol 11:419–421

    Article  Google Scholar 

  • Ayub MY, Norazmir MN, Mamot S, Jeeven K, Hadijah H (2010) Anti-hypertensive effect of pink guava (Psidium guajava) puree on spontaneous hypertensive rats. Int Food Res J 17:89–96

    Google Scholar 

  • Bajpai M, Pande A, Tewari SK, Prashad D (2005) Phenolic content and antioxidant activity of some food and medicinal plants. Int J Food Sci Nutr 4:287–291

    Article  Google Scholar 

  • Balasuriya BWN, Rupasinghe HPV (2011) Plant flavonoids as angiotensin converting enzyme inhibitors in regulation of hypertension. Funct Foods Health Dis 1:172–188

    Google Scholar 

  • Belle NAV, Dalmolin GD, Fonini G, Rubim MA, Rocha JBT (2004) Polyamines reduce lipid peroxidation induced by different pro-oxidant agents. Brain Res 1008:245–251

    Article  CAS  PubMed  Google Scholar 

  • Bravo L (1998) Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56:317–333

    Article  CAS  PubMed  Google Scholar 

  • Calcerrada P, Peluffo G, Radi R (2011) Nitric oxide-derivedoxidants with a focus on peroxynitrite: molecular targets, cellular responses and therapeutic implications. Curr Pharm Des 17(35):3905–3932

    Article  CAS  PubMed  Google Scholar 

  • Chu Y, Sun J, Wu X, Liu RH (2002) Antioxidant and antiproliferative activity of common vegetables. J Agric Food Chem 50(23):6910–6916

    Article  CAS  PubMed  Google Scholar 

  • Crews DE (2007) Senescence, aging and disease. J Physiol Anthropol 26:365–372

    Article  PubMed  Google Scholar 

  • Cushman DW, Cheung HS (1971) Spectrophotometric assay and properties of the Angiotensin 1-converting enzyme of rabbit lung. Biochem Pharmacol 20:1637–1648

    Article  CAS  PubMed  Google Scholar 

  • Dastmalchi K, Dorman HJD, Kosar M, Hiltunen R (2007) Chemical composition and in vitro antioxidant evaluation of a water soluble Moldavian balm (Dracocephalum moldavica L.) extract. Lebensm Wiss Technol 40:239–248

    Article  CAS  Google Scholar 

  • Gyamfi M, Yonamine M, Aniya Y (1999) Free-radical scavenging action of medicinal herbs from Ghana:Thonningia sanguinea on experimentally-induced liver injuries. Gen Pharmacol 32:661–667

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JMC (1981) Formation of a thiobarbituric-acid- reactive substance from deoxyribose in the presence of iron salts: the role of superoxide and hydroxyl radicals. FEBS Lett 128:347–352

    Article  CAS  PubMed  Google Scholar 

  • Joseph S, Chatli MK, Biswas AK, Sahoo J (2014) Efficacy of pink guava pulp as an antioxidant in raw pork emulsion. J Food Sci Technol 51(8):1492–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaisserlian CE, Razzouq N, Astier A, Paul M (2005) Sodium nitroprusside stability at 1 μg/mL in aqueous solutions. Eur J Hosp Pharm Sci 11:88–90

    Google Scholar 

  • Kelley WTD, Coffey DL, Mueller TC (1994) Lipid chromatographic determination of phenolic acids in soil. J AOAC Int 77:805–809

    CAS  Google Scholar 

  • Kennelly EJ, Flores G, Dastmalchi K, Wu S-B, Whalen K, Dabo AJ, Reynertson KA, Foronjy RF, Doarmiento JM (2013) Phenolic-rich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem 141:889–895

    Article  PubMed  Google Scholar 

  • Manso MA, Marta M, Jeanne E, Rosario H, Amaya A, Rosina L (2008) Effect of the long-term intake of an egg white hydrolysate on the oxidative status and blood lipid profile of spontaneously hypertensive rats. Food Chem 109:361–367

    Article  CAS  PubMed  Google Scholar 

  • Marcocci L, Maguire JJ, Droy-Lefaix MT, Packer L (1994) The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem Biophys Res Commun 201:748–755

    Article  CAS  PubMed  Google Scholar 

  • Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and praline contents in Burkina Fasan honey, as well as their radical scavenging activity. Food Chem 91:571–577

    Article  CAS  Google Scholar 

  • Miguel M, Aleixandre MA, Ramos M, López- Fandiño R (2006) Effect of simulated gastrointestinal digestion on the antihypertensive properties of ACE- inhibitory peptides derived from ovalbumin. J Agric Food Chem 54:726–731

    Article  CAS  PubMed  Google Scholar 

  • Minotti G, Aust SD (1987) An investigation into the mechanism of citrate-Fe2+-dependent lipid peroxidation. Free Radic Biol Med 3:379–387

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee PK, Chaudhary SK, Maity N, Nema NK, Bahdra S, Saha BP (2014) Ocimum sactum L, a potential angiotensin converting enzyme (ACE) inhibitor useful in hypertension. Indian J Natur Prod Resour 5:83–87

    Google Scholar 

  • Musaa KH, Abdullaha A, Subramaniamb V (2015) Flavonoid profile and antioxidant activity of pink guava. Skin 172(36b):308-57a

    Google Scholar 

  • Oboh G, Rocha JBT (2007) Polyphenols in Red Pepper [Capsicum annuumvar. aviculareTepin)] and their protective effect on some pro-oxidants induced lipid peroxidation in brain and liver. Eur Food Res Tech 225:239–247

    Article  CAS  Google Scholar 

  • Oboh G, Ogunruku OO, Ogidiolu FO, Ademiluyi AO, Adedayo BC, Ademosun AO (2014) Interaction of some commercial teas with some carbohydrate metabolizing enzymes linked with type-2 diabetes: a dietary intervention in the prevention of type-2 diabetes. Advanc Prev Med 2014:534082

    Google Scholar 

  • Ogbole OO, Adeniji JA, Ajaiyeoba EO, Adu DF (2013) Anti-polio virus activity of medicinal plants selected from the Nigerian ethno-medicine. Acad J 12(24):3878–3883

    Google Scholar 

  • Ogunmefun OT, Fasola TR, Saba AB, Akinyemi AJ (2015) Inhibitory effect of Phragmanthera incana (Schum.) harvested from Cocoa (Theobroma Cacao) and Kolanut (Cola Nitida) trees on Fe2+ induced lipid oxidative stress in some rat tissues-in vitro. IJBS 11(1):16

    PubMed Central  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ojewole JA (2005) Hypoglycemic and hypotensive effects of Psidium guajava L, (Myrtaceae) leaf aqueous extracts. Methods Find Exp Clin Pharmacol 27:689–695

    Article  CAS  PubMed  Google Scholar 

  • Oyaizu M (1986) Studies on products of browning reaction: antioxidative activity of products of browning reaction prepared from glucosamine. Jpn J Nutr 44:307–315

    Article  CAS  Google Scholar 

  • Puntel RL, Nogueira CW, Rocha JBT (2005) Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem Res 30:225–235

    Article  CAS  PubMed  Google Scholar 

  • Quifones M, Guerrero L, Suarez M, Poro Z, Aleicandre A, Arola L, Muguerza B (2013) Low-molecular procyanidin rich grape seed extract exerts antihypertensive effect in males spontaneously hypertensive rats. Food Res Int 51(2):587–595

    Article  Google Scholar 

  • Radi R (2004) Nitric oxide, oxidants, and protein tyrosine nitration. Proc Natl Acad Sci U S A 101:4003–4008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorisation assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Roy CK, Kamath JV, Asad M (2006) Hepatoprotective activity of Psidium guajava L leaf extract. Indian J Exp Biol 44:305–311

    PubMed  Google Scholar 

  • Ruttoh EK, Bii C, Tarus PK, Machocho A, Karimi LK, Okemo P (2009) Antifungal activity of Tabernaemontana stapfiana Britten (Apocynaceae) organic extracts. Pharmacognosy Res 1(6):387

    Google Scholar 

  • Schiffrin EL (2010) Antioxidants in hypertension and cardiovascular diseases. Mol Inter 10:354–362

    Article  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Ravent´os RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Taler SJ, Agarwal R, Bakris GL, Flynn JT, Nilsson PM, Rahman M, Sanders PW, Textor SC, Weir MR, Townsend RR (2013) KDOQI US commentary on the 2012 KDIGO clinical practice guideline for management of blood pressure in CKD. Am J Kidney Dis 62(2):201–213

    Article  PubMed  PubMed Central  Google Scholar 

  • Umamaheswari M, Ajith MP, Asokkumar K, Sivashanmugam T, Subhadradevi V, Jagannath P, Madeswaran A (2012) In vitro angiotensin converting enzyme inhibitory and antioxidant activities of seed extract of Apium graveolens Linn. Ann Biol Res 3:1274–1282

    Google Scholar 

  • Wagner C, Fachinetto R, Dalla Corte CL, Brito VB, Severo D, De Oliveira Costa Dias G, Morel AF, Nogueira CW, Rocha JB (2006) Quercitrin, a glycoside form of quercetin, prevents lipid peroxidation in vitro. Brain Res 1107(1):192–198

    Article  CAS  PubMed  Google Scholar 

  • Wan Nur Zahidah WZ, Noriham A, Zainon MN (2011) Antioxidant activity of plant by-products (pink guava leaves and seeds) and their application in cookies. Thai J Agric Sci 44(5):374–383

    Google Scholar 

  • Zar JH (1984) Biostatistical analysis. Prentice-Hall, Inc., Upper Saddle River, p 620

    Google Scholar 

  • Zhang Z-L, Lia Q-L, Lia B-G, Zhangb Y, Gaob X-P, Lia C-Q (2008) Three angiotensin-converting enzyme inhibitors from Rabdosia coetsa. Phytomedicine 15:386–388

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adedayo O. Ademiluyi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ademiluyi, A.O., Oboh, G., Ogunsuyi, O.B. et al. A comparative study on antihypertensive and antioxidant properties of phenolic extracts from fruit and leaf of some guava (Psidium guajava L.) varieties . Comp Clin Pathol 25, 363–374 (2016). https://doi.org/10.1007/s00580-015-2192-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-015-2192-y

Keywords

Navigation