[go: up one dir, main page]

Skip to main content
Log in

Composites prepared by penetrating poly(ethylene oxide) chains into mesoporous silica

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Mesoporous silica was synthesized by hydrolysis of tetraethylorthosilicate (TEOS, formula Si(OCH2CH3)4) at ambient temperature in a basic ethanol-water solution, with cetyltrimethyl ammonium bromide as a template. It had a surface area of approximately 1,400 m2/g, and an average pore diameter of approximately 40 Å. Portions were blended into three samples of poly(ethylene oxide) (PEO) of varying molecular weights, in the hope of making novel composites by penetrating some of the PEO chains into the silica channels. Differential Scanning Calorimetry (DSC) and X-ray diffraction (XRD) were used to characterize the structures of the PEO/mesoporous silica composites after they were held at 100 °C for up to 30 min. In both experiments, the melting temperature of the PEO decreased and ultimately disappeared. These results suggest that the PEO chains did penetrate into the silica pores, and since they were constrained in the pores, their crystallization was suppressed. This provides an interesting parallel to the disappearance of the glass transition temperatures of polymers constrained in the cavities of zeolites or in the galleries of intercalated clays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Mark JE, Lee CY-C, Bianconi PA (eds) (1995) Hybrid Organic – Inorganic Composites; ACS Symposium Series 585. American Chemical Society, Washington, DC

  2. Laine RM, Sanchez C, Giannelis E, Brinker CJ (eds) (2001), Organic/Inorganic Hybrid Materials –2000. vol 628, Materials Research Society, Warrendale, PA, USA

  3. Hjelm RJ, Nakatani AI, Gerspacher M, Krishnamoorti R (eds) (2001) Filled and nanocomposite polymer materials. vol 661, Materials Research Society, Warrendale, PA, USA

  4. Krishnamoorti R, Vaia RA (eds) (2002), Polymer nanocomposites: synthesis, characterization, and modeling. American Chemical Society, Washington, DC

  5. Al-ghamdi AMS, Mark JE (1988) Polym Bull 20:537

    CAS  Google Scholar 

  6. Wen J, Mark JE (1994) J Mater Sci 29:499

    CAS  Google Scholar 

  7. Frisch HL, Mark JE (1996) Chem Mater 8:1735

    Article  CAS  Google Scholar 

  8. Frisch HL, Maaref S, Xue Y, Beaucage G, Pu Z, Mark JE (1996) J Polym Sci, Part A: Polym Chem 34:673

    Google Scholar 

  9. Frisch HL, West JM, Coltner CG, Attard GS (1996) J Polym Sci: Part A: Polym Chem 34:1823

    Google Scholar 

  10. Frisch HL, Xue Y, Maaref S, Xue Y, Beaucage G, Pu Z, Mark JE (1996) Macromol Symp 106:147

    CAS  Google Scholar 

  11. Mark JE in Sauvage J-P, Dietrich-Buchecker C (eds) (1999) Molecular catenanes, rotaxanes and knots. Wiley, Weinheim, Germany, pp 223

  12. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CT-W, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) J Am Chem Soc 114:10834

    CAS  Google Scholar 

  13. Tanev PT, Pinnavaia TJ (1995) Science 267:865

    CAS  Google Scholar 

  14. Corma A (1997) Chem Rev 97:2373

    Article  CAS  PubMed  Google Scholar 

  15. Ying JY, Mehnert CP, Wong MS (1999) Angew Chem, Int Ed 38:56

  16. Jackson CJ, McKenna GB (1991) J Non-Cryst Solids 131:221

    Google Scholar 

  17. Zhang J, Liu G, Jonas J (1992) J Phys Chem 96:3478

    CAS  Google Scholar 

  18. Jackson CJ, McKenna GB (1990) J Chem Phys 93:9002

    Article  CAS  Google Scholar 

  19. Phalippou J, Ayral A, Woignier T, Quinson JF, Pauthe M, Chatelut M (1991) Europhys Lett 14:249

    CAS  Google Scholar 

  20. Ma W-J, Banavar JR, Koplik J (1992) J Chem Phys 97:485

    Article  CAS  Google Scholar 

  21. Morishige M, Nobuoka K (1997) J Chem Phys 107:6965

    Article  CAS  Google Scholar 

  22. Mayen M (1986) Eur Polym J 22:987

    Article  CAS  Google Scholar 

  23. Arndt KF, Zander P (1990) Colloid Polym Sci 268:806

    CAS  Google Scholar 

  24. Pouchelon A, Soria M, Moll L (1990) Macromol Chem, Macromol Symp 40:147

  25. Jackson CL, McKenna GB (1991) Rubber Chem Technol 64:760

    CAS  Google Scholar 

  26. Madkour T, Mark JE (1993) Polym Bull 31:615

    CAS  Google Scholar 

  27. Grobler JHA, McGill WJ (1993) J Polym Sci, Part B: Polym Phys 31:575

    Google Scholar 

  28. Ogino K, Sato H (1995) J Polym Sci, Part B: Polym Phys 33:445

    Google Scholar 

  29. Pouchelon A, George C, Menez P (2001) Macromol Symp171:233

    Google Scholar 

  30. Krawiec W, Scanlon Jr LG, Fellner JP, Vaia RA, Vasudevan S, Giannelis EP (1995) J Power Sources 54:310

    Article  CAS  Google Scholar 

  31. Vaia RA, Vasudevam S, Krawiec W, Scanlon LG, Giannelis EP (1995) Adv Mater 7:154

    CAS  Google Scholar 

  32. Goldstein AN, Esher CM, Alivisatos AP (1992) Science 256:1425 (and pertinent references cited therein)

    CAS  Google Scholar 

  33. Bertsch G (1997) Science 277:1619

    Article  CAS  Google Scholar 

  34. Alivisatos AP, Barbara PF, Castleman AW, Chang J, Dixon DA, Klein ML, McLendon GL, Miller JS, Ratner MA, Rossky PJ, Stupp SI, Thompson ME (1998) Adv Mater 10:1297

    Article  Google Scholar 

  35. Oriakhi CO, Nafshun RL, Lerner MM (1996) Mater Res Bull 31:1513

    Article  CAS  Google Scholar 

  36. Bujdak J, Hackett E, Giannelis EP (2000) Chem Mater 12:2168

    Article  CAS  Google Scholar 

  37. Opitz R, Lambreva DM, de Jeu WH (2002) Macromolecules 35:6930

    Article  CAS  Google Scholar 

  38. Mark JE (ed) (1999) Polymer Data Handbook. Oxford University Press, New York

  39. Blin JL, Leonard A, Su BL. (2001) Chem Mater 13:3542

    Article  CAS  Google Scholar 

  40. Schumacher K, von Hohenesche CF, Unger KK, Ulrich R, du Chesne A, Wiesner U, Spiess HW (1999) Adv Mater 11:1194

    Article  CAS  Google Scholar 

  41. Nooney RI, Dhanasekaran T, Chen Y, Josephs R, Ostafin AE (2002) Adv Mater 14:529

    Article  CAS  Google Scholar 

  42. Sur GS, Lee TJ, Sun HL, Mark JE (manuscript in preparation)

  43. Annis BK, Kim MH, Wignall GD, Borodin O, Smith GD (2000) Macromolecules 33:7544

    Article  CAS  Google Scholar 

  44. Smith GD, Yoon DY, Jaffe RL, Colby RH, Krishnamoorti R, Fetters LJ (1996) Macromolecules 29:3462

    Article  CAS  Google Scholar 

  45. Mandelkern L (1964) Crystallization of Polymers. McGraw-Hill, New York. Three-volume 2nd edn Cambridge University Press, Cambridge, England (in press).

Download references

Acknowledgments

It is a pleasure to acknowledge the financial support provided by the National Science Foundation through Grant DMR-0075198 (Polymers Program, Division of Materials Research).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. E. Mark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sur, G.S., Sun, H.L., Lee, T.J. et al. Composites prepared by penetrating poly(ethylene oxide) chains into mesoporous silica. Colloid Polym Sci 281, 1040–1045 (2003). https://doi.org/10.1007/s00396-003-0954-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-003-0954-6

Keywords

Navigation