[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Ultrashort laser pulses with durations in the fs-to-ps range were used for large area surface processing of steel aimed at mimicking the morphology and extraordinary wetting behaviour of bark bugs (Aradidae) found in nature. The processing was performed by scanning the laser beam over the surface of polished flat sample surfaces. A systematic variation of the laser processing parameters (peak fluence and effective number of pulses per spot diameter) allowed the identification of different regimes associated with characteristic surface morphologies (laser-induced periodic surface structures, i.e., LIPSS, grooves, spikes, etc.). Moreover, different laser processing strategies, varying laser wavelength, pulse duration, angle of incidence, irradiation atmosphere, and repetition rates, allowed to achieve a range of morphologies that resemble specific structures found on bark bugs. For identifying the ideal combination of parameters for mimicking bug-like structures, the surfaces were inspected by scanning electron microscopy. In particular, tilted micrometre-sized spikes are the best match for the structure found on bark bugs. Complementary to the morphology study, the wetting behaviour of the surface structures for water and oil was examined in terms of philic/phobic nature and fluid transport. These results point out a route towards reproducing complex surface structures inspired by nature and their functional response in technologically relevant materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Liu, X. Yao, L. Jiang, Chem. Soc. Rev. 39, 3240–3255 (2010)

    Article  Google Scholar 

  2. R. Silberglied, A. Aiello, Science 207, 773–775 (1980)

    Article  ADS  Google Scholar 

  3. E.F. Contreras, M.D. Coscaron, Zootaxa 3500, 1–35 (2012)

    Article  Google Scholar 

  4. E. Heiss, Anales Inst. Biol. Univ. Nac. Auton. Mexico Ser. Zool. 61, 279–296 (1990)

    Google Scholar 

  5. T. van der Heyden, J.M. Díaz, Arquivos Entomolóxicos 15, 371–373 (2016)

    Google Scholar 

  6. D. Chandra, S. Yang, Langmuir 27, 13401–13405 (2011)

    Article  Google Scholar 

  7. M.C. Larivière, A. Larochelle, Kataloge der OÖ. Landesmuseen Neue Serie 50, 181–214 (2006)

    Google Scholar 

  8. B.S. Krall, R.J. Bartelt, C.J. Lewis, D.W. Whitman, J. Chem. Ecol. 25, 2477–2494 (1999)

    Article  Google Scholar 

  9. J.R. Aldrich, Annu. Rev. Emntomol. 33, 211–238 (1988)

    Article  Google Scholar 

  10. J. Raška, PhD Thesis, Charles University Prague (2009)

  11. C. Plamadeala, F. Hischen, R. Friesenecker, R. Wollhofen, J. Jacak, G. Buchberger, E. Heiss, T.A. Klar, W. Baumgartner, J. Heitz, R. Soc. Open. Sci. 4, 160849 (2017)

    Article  ADS  Google Scholar 

  12. P. Kment, J. Vilimova, Zootaxa 2706, 1–77 (2010)

    Article  Google Scholar 

  13. U. Hermens, S.V. Kirner, C. Emonts, P. Comanns, E. Skoulas, A. Mimidis, H. Mescheder, K. Winands, J. Krüger, E. Stratakis, J. Bonse, Appl. Surf. Sci. 418, 499–507 (2017)

    Article  ADS  Google Scholar 

  14. J.M. Liu, Opt. Lett. 7, 196–198 (1982)

    Article  ADS  Google Scholar 

  15. J. Bonse, G. Mann, J. Krüger, M. Marcinkowski, M. Eberstein, Thin Solid Films 542, 420–425 (2013)

    Article  ADS  Google Scholar 

  16. J.E. Sipe, J.F. Young, J.S. Preston, H.M. van Driel, Phys. Rev. B 27, 1141–1154 (1983)

    Article  ADS  Google Scholar 

  17. J. Bonse, J. Krüger, S. Höhm, A. Rosenfeld, J. Laser Appl. 24, 042006 (2012)

    Article  ADS  Google Scholar 

  18. A.Y. Vorobyev, C. Guo, Laser Photonics Rev. 7, 385–407 (2013)

    Article  ADS  Google Scholar 

  19. G.D. Tsibidis, C. Fotakis, E. Stratakis, Phys. Rev. B 92, 041405 (2015)

    Article  ADS  Google Scholar 

  20. J. Bonse, S. Höhm, S.V. Kirner, A. Rosenfeld, J. Krüger, IEEE J. Sel. Top. Quant. Electron. 23, 9000615 (2017)

    Article  Google Scholar 

  21. K. Ahmmed, C. Grambow, A.-M. Kietzig, Micromachines 5, 1219 (2014)

    Article  Google Scholar 

  22. J. Bonse, S. Baudach, J. Krüger, W. Kautek, M. Lenzner, Appl. Phys. A 74, 19–25 (2002)

    Article  ADS  Google Scholar 

  23. T. Yong Hwang, C. Guo, J. Appl. Phys. 111, 083518 (2012)

    Article  ADS  Google Scholar 

  24. E.J.Y. Ling, J. Saïd, N. Brodusch, R. Gauvin, P. Servio, A.-M. Kietzig, Appl. Surf. Sci. 353, 512–521 (2015)

    Article  ADS  Google Scholar 

  25. K. Lange, M. Schulz-Ruhtenberg, J. Caro, ChemElectroChem 4, 570–576 (2017)

    Article  Google Scholar 

  26. T.-H. Her, R.J. Finlay, C. Wu, S. Deliwala, E. Mazur, Appl. Phys. Lett. 73, 1673–1675 (1998)

    Article  ADS  Google Scholar 

  27. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, C. Fotakis, Appl. Phys. A 93, 819–825 (2008)

    Article  ADS  Google Scholar 

  28. V. Zorba, E. Stratakis, M. Barberoglou, E. Spanakis, P. Tzanetakis, S.H. Anastasiadis, C. Fotakis, Adv. Mater. 20, 4049–4054 (2008)

    Article  Google Scholar 

  29. A.-M. Kietzig, S.G. Hatzikiriakos, P. Englezos, Langmuir 25, 4821–4827 (2009)

    Article  Google Scholar 

  30. A.-M. Kietzig, M. Negar Mirvakili, S. Kamal, P. Englezos, S.G. Hatzikiriakos, J. Adhes. Sci. Technol. 25, 2789–2809 (2011)

    Google Scholar 

  31. M. Martínez-Calderon, A. Rodríguez, A. Dias-Ponte, M.C. Morant-Miñana, M. Gómez-Aranzadi, S.M. Olaizola, Appl. Surf. Sci. 374, 81–89 (2016)

    Article  ADS  Google Scholar 

  32. P. Bizi-bandoki, S. Valette, E. Audouard, S. Benayoun, Appl. Surf. Sci. 273, 399–407 (2013)

    Article  ADS  Google Scholar 

  33. M.V. Rukosuyev, J. Lee, S.J. Cho, G. Lim, M.B.G. Jun, Appl. Surf. Sci. 313, 411–417 (2014)

    Article  Google Scholar 

  34. J. Yong, F. Chen, Q. Yang, X. Hou, Soft Matter 11, 8897–8906 (2015)

    Article  ADS  Google Scholar 

  35. I. Paradisanos, C. Fotakis, S.H. Anastasiadis, E. Stratakis, Appl. Phys. Lett. 107, 111603 (2015)

    Article  ADS  Google Scholar 

  36. R.N. Wenzel, Ind. Eng. Chem. 28, 988–994 (1936)

    Article  Google Scholar 

  37. A.Y. Vorobyev, C. Guo, Appl. Phys. Lett. 92, 041914 (2008)

    Article  ADS  Google Scholar 

  38. A. Ruiz, R. de la Cruz, J. Lahoz, G.F. Siegel, J. de la Fuente, Solis, Opt. Lett. 39, 2491–2494 (2014)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank S. Benemann, (BAM 6.1) for the SEM characterizations, A. Hertwig (BAM 6.7) for WLIM measurements, and S. Binkowski (BAM 6.3) for polishing the steel samples. This work has received funding from the Horizon 2020 European Union’s research and innovation programme under Grant Agreement No. 665337 (“LiNaBioFluid”; URL: http://www.laserbiofluid.eu).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kirner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirner, S.V., Hermens, U., Mimidis, A. et al. Mimicking bug-like surface structures and their fluid transport produced by ultrashort laser pulse irradiation of steel. Appl. Phys. A 123, 754 (2017). https://doi.org/10.1007/s00339-017-1317-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-017-1317-3

Navigation