[go: up one dir, main page]

Skip to main content
Log in

Cluster algebras and Jones polynomials

  • Published:
Selecta Mathematica Aims and scope Submit manuscript

Abstract

We present a new and very concrete connection between cluster algebras and knot theory. This connection is being made via continued fractions and snake graphs. It is known that the class of 2-bridge knots and links is parametrized by continued fractions, and it has recently been shown that one can associate to each continued fraction a snake graph, and hence a cluster variable in a cluster algebra. We show that up to normalization by the leading term the Jones polynomial of the 2-bridge link is equal to the specialization of this cluster variable obtained by setting all initial cluster variables to 1 and specializing the initial principal coefficients of the cluster algebra as follows \(y_1=t^{-2}\) and \( y_i=-t^{-1}\), for all \(i> 1\). As a consequence we obtain a direct formula for the Jones polynomial of a 2-bridge link as the numerator of a continued fraction of Laurent polynomials in \(q=-t^{-1}\). We also obtain formulas for the degree and the width of the Jones polynomial, as well as for the first three and the last three coefficients. Along the way, we also develop some basic facts about even continued fractions and construct their snake graphs. We show that the snake graph of an even continued fraction is isomorphic to the snake graph of a positive continued fraction if the continued fractions have the same value. We also give recursive formulas for the Jones polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Çanakçı, İ., Schiffler, R.: Snake graph calculus and cluster algebras from surfaces. J. Algebra 382, 240–281 (2013)

    Article  MathSciNet  Google Scholar 

  2. Çanakçı, İ., Schiffler, R.: Snake graph calculus and cluster algebras from surfaces II: self-crossing snake graphs. Math. Z. 281(1), 55–102 (2015)

    Article  MathSciNet  Google Scholar 

  3. Çanakçı, İ., Schiffler, R.: Snake graph calculus and cluster algebras from surfaces III: band graphs and snake rings. Int. Math. Res. Not. 2019, 1145–1226 (2017)

    Article  Google Scholar 

  4. Çanakçı, İ., Schiffler, R.: Cluster algebras and continued fractions. Compos. Math. 154(3), 565–593 (2018)

    Article  MathSciNet  Google Scholar 

  5. Conway, J.H.: An enumeration of knots and links, and some of their algebraic properties. In: Leech, J. (ed.) Computational Problems in Abstract Algebra, pp. 329–358. Pergamon Press, Oxford (1970)

    Google Scholar 

  6. Derksen, H., Weyman, J., Zelevinsky, A.: Quivers with potentials and their representations II: applications to cluster algebras. J. Am. Math. Soc. 23(3), 749–790 (2010)

    Article  MathSciNet  Google Scholar 

  7. Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces, Part I: cluster complexes. Acta Math. 201, 83–146 (2008)

    Article  MathSciNet  Google Scholar 

  8. Fomin, S., Zelevinsky, A.: Cluster algebras I: foundations. J. Am. Math. Soc. 15, 497–529 (2002)

    Article  MathSciNet  Google Scholar 

  9. Fomin, S., Zelevinsky, A.: Cluster algebras IV: coefficients. Compos. Math. 143, 112–164 (2007)

    Article  MathSciNet  Google Scholar 

  10. Futer, D., Kalfagianni, E., Purcell, J.: Dehn filling, volume, and the Jones polynomial. J. Differ. Geom. 78(3), 429–464 (2008)

    Article  MathSciNet  Google Scholar 

  11. Hardy, G.H., Wright, E.M.: An Introduction to the Theory of Numbers, fourth edn. Clarendon Press, Oxford (1960)

    MATH  Google Scholar 

  12. Hikami, K., Inoue, R.: Braiding operator via quantum cluster algebra. J. Phys. A 47(47), 474006 (2014)

    Article  MathSciNet  Google Scholar 

  13. Hikami, K., Inoue, R.: Braids, complex volume and cluster algebras. Algebr. Geom. Topol. 15(4), 2175–2194 (2015). (English summary)

    Article  MathSciNet  Google Scholar 

  14. Jones, V.: A polynomial invariant for knots via von Neumann algebras. Bull. Am. Math. Soc. 12, 103–111 (1984)

    Article  MathSciNet  Google Scholar 

  15. Kanenobu, T., Miyazawa, Y.: 2-bridge link projections. Kobe J. Math. 9(2), 171–182 (1992)

    MathSciNet  MATH  Google Scholar 

  16. Kauffman, L.H., Lambropoulou, S.: On the classification of rational knots. Enseign. Math. (2) 49(3–4), 357–410 (2003). (English summary)

    MathSciNet  MATH  Google Scholar 

  17. Lee, K., Schiffler, R.: Positivity for cluster algebras. Ann. Math. 182(1), 73–125 (2015)

    Article  MathSciNet  Google Scholar 

  18. Lickorish, W.: An Introduction to Knot Theory. Graduate Texts in Mathematics, vol. 175. Springer, New York (1997)

    Book  Google Scholar 

  19. Lickorish, W., Millet, K.: A polynomial invariant of oriented links. Topology 26(1), 107–141 (1987)

    Article  MathSciNet  Google Scholar 

  20. Musiker, G., Schiffler, R.: Cluster expansion formulas and perfect matchings. J. Algebr. Combin. 32(2), 187–209 (2010)

    Article  MathSciNet  Google Scholar 

  21. Musiker, G., Schiffler, R., Williams, L.: Positivity for cluster algebras from surfaces. Adv. Math. 227, 2241–2308 (2011)

    Article  MathSciNet  Google Scholar 

  22. Musiker, G., Schiffler, R., Williams, L.: Bases for cluster algebras from surfaces. Compos. Math. 149(2), 217–263 (2013)

    Article  MathSciNet  Google Scholar 

  23. Nakabo, S.: Formulas on the HOMFLY and Jones polynomials of 2-bridge knots and links. Kobe J. Math. 17(2), 131–144 (2000)

    MathSciNet  MATH  Google Scholar 

  24. Perron, O.: Die Lehre von den Kettenbrüchen, 2nd edition, Chelsea Publishing Company, New York, 1950. (the first edition of this book from 1913 is available at https://archive.org/details/dielehrevondenk00perrgoog. Accessed 15 Jan 2017)

  25. Propp, J.: The Combinatorics of Frieze Patterns and Markoff Numbers arXiv:math.CO/0511633

  26. Rabideau, M.: \(F\)-polynomial formula from continued fractions. J. Algebra 509, 467–475 (2018)

    Google Scholar 

  27. Schiffler, R.: Homological Methods, Representation Theory, and Cluster Algebras. Lecture Notes on Cluster Algebras from Surfaces, pp. 65–99. CRM Short Courses, Springer, New York (2018)

    Book  Google Scholar 

  28. Schubert, H.: Knoten mit zwei Brücken. Math. Z. 65, 133–170 (1956). (German)

    Article  MathSciNet  Google Scholar 

  29. Shende, V., Treumann, D., Williams, H.: Cluster Varieties from Legendrian Knots, arXiv:1512.08942

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Schiffler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by the University of Nebraska–Lincoln, Korea Institute for Advanced Study, NSA Grant H98230-16-1-0059 and NSF Grant DMS-1800207. The second author was supported by the NSF-CAREER Grant DMS-1254567, the NSF Grant DMS-1800860 and by the University of Connecticut.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, K., Schiffler, R. Cluster algebras and Jones polynomials. Sel. Math. New Ser. 25, 58 (2019). https://doi.org/10.1007/s00029-019-0503-x

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s00029-019-0503-x

Keywords

Mathematics Subject Classification

Navigation