[go: up one dir, main page]

Skip to main content

Advertisement

Log in

Response of aquatic plants to abiotic factors: a review

  • Overview
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

This review aims to determine how environmental characteristics of aquatic habitats rule species occurrence, life-history traits and community dynamics among aquatic plants, and if these particular adaptations and responses fit in with general predictions relating to abiotic factors and plant communities. The way key abiotic factors in aquatic habitats affect (1) plant life (recruitment, growth, and reproduction) and dispersal, and (2) the dynamics of plant communities is discussed. Many factors related to plant nutrition are rather similar in both aquatic and terrestrial habitats (e.g. light, temperature, substrate nutrient content, CO2 availability) or differ markedly in intensity (e.g. light), variations (e.g. temperature) or in their effective importance for plant growth (e.g. nutrient content in substrate and water). Water movements (water-table fluctuations or flow velocity) have particularly drastic consequences on plants because of the density of water leading to strong mechanical strains on plant tissues, and because dewatering leads to catastrophic habitat modifications for aquatic plants devoid of cuticle and support tissues. Several abiotic factors that affect aquatic plants, such as substrate anoxia, inorganic carbon availability or temperature, may be modified by global change. This in turn may amplify competitive processes, and lead ultimately to the dominance of phytoplankton and floating species. Conserving the diversity of aquatic plants will rely on their ability to adapt to new ecological conditions or escape through migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Acosta LW, Sabbatini MR, Hernandez LF, Fernandez OA (1998) Regeneration of reproductive structures of Potamogeton pectinatus, Ruppia maritima, Zannichellia palustris and Chara contraria: Effect of temperature. Phyton Int J Exp Bot 63:167–178

    Google Scholar 

  • Amoros C, Bornette G (1999) Antagonist and cumulative effects of connectivity: a predictive model based on aquatic vegetation in riverine wetlands. Archiv für Hydrobiologie Suppl 115(3):311–327

    Google Scholar 

  • Anderson R, Kalff J (1988) Submerged aquatic macrophytes biomass in relation to sediment characteristics in ten temperate lakes. Freshw Biol 19:115–121

    Article  Google Scholar 

  • Arts GHP (2002) Deterioration of Atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquat Bot 73:373–393

    Article  CAS  Google Scholar 

  • Arts GHP, Van der Velde G, Roelofs JGM, Van Swaay CAM (1990) Successional changes in the soft water macrophyte vegetation of (sub) Atlantic, sandy, lowland regions during this Century. Freshw Biol 24:287–294

    Article  Google Scholar 

  • Baldwin DS, Mitchell AM (2000) The effects of drying and re-flooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems: a synthesis. Regul Rivers Res Manag 16:457–467

    Article  Google Scholar 

  • Barker T, Hatton K, O’Connor M, Connor L, Moss B (2008) Effects of nitrate load on submerged plant biomass and species richness: results of a mesocosm experiment. Fundam Appl Limnol 173:89–100

    Article  CAS  Google Scholar 

  • Barko JW, Smart RM (1986) Sediment-related mechanisms of growth limitation in submersed macrophytes. Ecology 67:1328–1340

    Article  CAS  Google Scholar 

  • Barko JW, Adams MS, Clesceri NL (1986) Environmental factors and their consideration in the management of submersed aquatic vegetation: a review. J Aquat Plant Manag 24:1–10

    Google Scholar 

  • Barrat-Segretain MH (1996) Germination and colonisation dynamics of Nuphar lutea (L.) Sm. in a former river channel. Aquat Bot 55:31–38

    Article  Google Scholar 

  • Barrett SCH, Eckert CG, Husband BC (1993) Evolutionary processes in aquatic plant populations. Aquat Bot 44:105–145

    Article  Google Scholar 

  • Bhowmik NG, Adams JR (1989) Successional changes in habitat caused by sedimentation in navigation pools. Hydrobiologia 176/177:17–27

    Article  Google Scholar 

  • Biehle G, Speck T, Spatz HC (1998) Hydrodynamics and biomechanics of the submerged water moss Fontinalis antipyretica—a comparison of specimens from habitats with different flow velocities. Botanica Acta 111:42–50

    Google Scholar 

  • Bini LM, Thomaz SM, Murphy KJ, Camargo AFM (1999) Aquatic macrophyte distribution in relation to water and sediment conditions in the Itaipu Reservoir, Brazil. Hydrobiologia 415:147–154

    Article  Google Scholar 

  • Blindow I (1992) Decline of charophytes during eutrophication: comparison with angiosperms. Freshw Biol 28:9–14

    Article  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    Article  CAS  PubMed  Google Scholar 

  • Boedeltje G, Bakker JP, Ten Brinke A, van Groenendael JM, Soesbergen M (2004) Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. J Ecol 92:786–796

    Article  Google Scholar 

  • Boedeltje G, Smolders AJR, Lamers LPM, Roelofs JGM (2005) Interactions between sediment propagule banks and sediment nutrient fluxes explain floating plant dominance in stagnant shallow waters. Archiv für Hydrobiologie 162:349–362

    Article  CAS  Google Scholar 

  • Boeger MRT, Poulson ME (2003) Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquat Bot 75:123–135

    Article  Google Scholar 

  • Bonifas KD, Walters DT, Cassman KG, Lindquist JL (2005) Nitrogen supply affects root:shoot ratio in corn and velvetleaf (Abutilon theophrasti). Weed Sci 53:670–675

    Article  CAS  Google Scholar 

  • Bonis A, Lepart J, Grillas P (1995) Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oikos 74:81–92

    Article  Google Scholar 

  • Bornette G, Amoros C (1991) Aquatic vegetation and hydrology of a braided river floodplain. J Veg Sci 2:497–512

    Article  Google Scholar 

  • Bornette G, Large ARG (1995) Groundwater-surface water ecotones at the upstream part of confluences in former river channels. Hydrobiologia 310:123–137

    Article  Google Scholar 

  • Bornette G, Puijalon S (2009) Macrophytes: ecology of aquatic plants. Encyclopedia of life sciences (ELS). Wiley, Chichester

    Google Scholar 

  • Bornette G, Amoros C, Castella C, Beffy JL (1994a) Succession and fluctuation in the aquatic vegetation of two former Rhône River channels. Vegetatio 110:171–184

    Article  Google Scholar 

  • Bornette G, Amoros C, Chessel D (1994b) Effect of allogenic processes on successional rates in former river channels. J Veg Sci 5:237–246

    Article  Google Scholar 

  • Bornette G, Amoros C, Lamouroux N (1998) Aquatic plant diversity in riverine wetlands: the role of connectivity. Freshw Biol 39:267–283

    Article  Google Scholar 

  • Bornette G, Piégay H, Citterio A, Amoros C, Godreau V (2001) Aquatic plant diversity in four river floodplains: a comparison at two hierarchical levels. Biodivers Conserv 10:1683–1701

    Article  Google Scholar 

  • Boston HL, Adams MS, Madsen JD (1989) Photosynthetic strategies and productivity in aquatic systems. Freshw Biol 34:27–57

    CAS  Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C-4 mechanisms in aquatic angiosperms: comparisons with terrestrial C-4 systems. Funct Plant Biol 29:379–392

    Article  CAS  Google Scholar 

  • Boylen CW, Sheldon RB (1976) Submergent macrophytes: growth under winter ice cover. Science 194:841–842

    Article  CAS  PubMed  Google Scholar 

  • Bravard JP, Amoros C, Pautou G (1986) Impact of civil engineering works on the successions of communities in a fluvial system. Oikos 47:92–111

    Article  Google Scholar 

  • Brock TCM, Van der Velde G, Van de Steeg HM (1987) The effects of extreme water level fluctuations on the wetland vegetation of a Nymphaeid-dominated oxbow lake in the Netherlands. Arch Hydrobiol 27:57–73

    Google Scholar 

  • Brock TCM, Mielo H, Oostermeijer G (1989) On the life cycle and germination of Hottonia palustris L. in a wetland forest. Aquat Bot 35:153–166

    Article  Google Scholar 

  • Brock MA, Nielsen DL, Shiel RJ, Green JD, Langley JD (2003) Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshw Biol 48:1207–1218

    Article  Google Scholar 

  • Brown JS, Eckert CG (2005) Evolutionary increase in sexual and clonal reproductive capacity during biological invasion in an aquatic plant Butomus umbellatus (Butomacées). Am J Bot 92:495–502

    Article  Google Scholar 

  • Bruni NC, Young JP, Dengler NG (1996) Leaf developmental plasticity of Ranunculus flabellaris in response to terrestrial and submerged environments. Can J Bot 74:823–837

    Article  Google Scholar 

  • Cao T, Xie P, Ni LY, Wu AP, Zhang M, Wu SK, Smolders AJP (2007) The role of NH4+ toxicity in the decline of the submersed macrophyte Vallisneria natans in lakes of the Yangtze River basin, China. Mar Freshw Res 58:581–587

    Article  CAS  Google Scholar 

  • Caraco N, Cole J, Findlay S, Wigand C (2006) Vascular plants as engineers of oxygen in aquatic systems. Bioscience 56:219–225

    Article  Google Scholar 

  • Carbiener R, Trémolières M, Mercier JL, Ortscheit A (1990) Aquatic macrophyte communities as bioindicators of eutrophication in calcareous oligosaprobe stream waters (Upper Rhine plain, Alsace). Vegetatio 86:71–88

    Article  Google Scholar 

  • Carpenter SR, Lodge DM (1986) Effects of submersed macrophytes on ecosystem processes. Aquat Bot 26:341–370

    Article  Google Scholar 

  • Casanova MT, Brock MA (2000) How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecol 147:237–250

    Article  Google Scholar 

  • Cellot B, Mouillot F, Henry CP (1998) Flood drift and propagule bank of aquatic macrophytes in a riverine wetland. J Veg Sci 9:631–640

    Article  Google Scholar 

  • Clarke E, Baldwin AH (2002) Response of wetland plants to ammonia and water level. Ecol Eng 18:257–264

    Article  Google Scholar 

  • Combroux I, Bornette G (2004) Effects of two types of disturbance on seed-bank and their relationship with established vegetation. J Veg Sci 15:13–20

    Article  Google Scholar 

  • Crossley MN, Dennison WC, Williams RR, Wearing AH (2002) The interaction of water flow and nutrients on aquatic plant growth. Hydrobiologia 489:63–70

    Article  CAS  Google Scholar 

  • Cushing CE, Allan JD (2001) Streams: their ecology and life. Academic Press, San Diego

    Google Scholar 

  • Dale HM (1985) Temperature and light: the determining factors in maximum depth distribution of aquatic macrophytes in Ontario. Can Hydrobiol 133:73–77

    Article  Google Scholar 

  • Declerck S, Vandekerkhove J, Johansson L, Muylaert K, Conde-Porcuna JM, Van der Gucht K, Perez-Martinez C, Lauridsen T, Schwenk K, Zwart G, Rommens W, Lopez-Ramos J, Jeppesen E, Vyverman W, Brendonck L, De Meester L (2005) Multi-group biodiversity in shallow lakes along gradients of phosphorus and water plant cover. Ecology 86:1905–1915

    Article  Google Scholar 

  • Denny M (1988) Biology and the mechanics of the wave-swept environment. Princeton University Press, Princeton

    Google Scholar 

  • Doyle RD (2001) Effects of waves on the early growth of Vallisneria americana. Freshw Biol 46:389–397

    Article  Google Scholar 

  • Dvoraki J, Bestz EPH (1982) Macro-invertebrate communities associated with the macrophytes of Lake Vechten: structural and functional relationships. Hydrobiologia 95:115–126

    Article  Google Scholar 

  • Engelhardt KAM, Ritchie ME (2001) Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 441:687–689

    Article  Google Scholar 

  • Furey PC, Nordin RN, Mazumder A (2004) Water level drawdown affects physical and biogeochemical properties of littoral sediments of a reservoir and a natural lake. Lake Reserv Manag 20:280–295

    Article  CAS  Google Scholar 

  • Gessner F (1955) Hydrobotanik, Die Physiologischen Grundlagen der Pflanzenverbreitung in Wasser. I. Energiehaushalt. Berlin, VEB Deutscher Verlag der Wissenschaften

  • Gessner F (1959). Hydrobotanik. Die Physiologischen Grundlagen der Pflanzenverbreitung in Wasser. II. Energiehaushalt. Berlin, VEB Deutscher Verlag der Wissenschaften

  • Greulich S, Bornette G (1999) Competitive abilities and related strategies in four aquatic plant species from an intermediately disturbed habitat. Freshw Biol 41:493–506

    Article  Google Scholar 

  • Grime JP (2002) Plant strategies, vegetation processes, and ecosystem properties. Wiley, Chichester

    Google Scholar 

  • Grimoldi AA, Insausti P, Roitman GG, Soriano A (1999) Responses to flooding intensity in Leontodon taraxacoides. New Phytol 141:119–128

    Article  Google Scholar 

  • Gross EM, Johnson RL, Hairston NG Jr (2001) Experimental evidence for changes in submersed macrophyte species composition caused by the herbivore Acentria ephemerella (Lepidoptera). Oecologia 127:105–114

    Article  Google Scholar 

  • Handley RJ, Davy AJ (2002) Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquat Bot 73:129–136

    Article  Google Scholar 

  • Hanley ME, Lamont BB (2002) Relationships between physical and chemical attributes of congeneric seedlings: how important in seedling defence? Funct Ecol 16:216–222

    Article  Google Scholar 

  • Hartig EK, Grozev O, Rosenzweig C (1997) Climate change, agriculture and wetlands in Eastern Europe: vulnerability, adaptation and policy. Clim Chang 36:107–121

    Article  Google Scholar 

  • Harwell MC, Havens KE (2003) Experimental studies on the recovery potential of submerged aquatic vegetation after flooding and desiccation in a large subtropical lake. Aquat Bot 77:135–151

    Article  Google Scholar 

  • Haslam SM (1978) River plants. The macrophytic vegetation of watercourses. Cambridge University Press, Cambridge

    Google Scholar 

  • Havens KE, Sharfstein B, Brady MA, East TL, Harwell MC, Maki RP, Rodusky AJ (2004) Recovery of submerged plants from high water stress in a large subtropical lake in Florida, USA. Aquat Bot 78:67–82

    Article  Google Scholar 

  • Henry CP, Amoros C, Bornette G (1996) Species traits and recolonization processes after flood disturbances in riverine macrophytes. Vegetatio 122:13–27

    Article  Google Scholar 

  • Hill NM, Keddy PA, Wisheu IC (1998) A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environ Manag 22:723–736

    Article  Google Scholar 

  • Holmes NTH (1999) Recovery of headwater stream flora following the 1989–1992 groundwater drought. Hydrol Process 13:341–354

    Article  Google Scholar 

  • Hupp CR, Woodside MD, Yanosky TM (1993) Sediment and trace element trapping in a forested wetland, Chickahominy River, Virginia. Wetlands 13:95–104

    Article  Google Scholar 

  • Hussner A (2009) Growth and photosynthesis of four invasive aquatic plant species in Europe. Weed Res 49:506–515

    Article  Google Scholar 

  • Hussner A, Losch R (2005) Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, Northrhine-Westphalia). Limnologica 35:18–30

    Google Scholar 

  • Huston M (1979) A general hypothesis of species diversity. Am Nat 113:81–101

    Article  Google Scholar 

  • Huston M, Smith T (1987) Plant succession: life history and competition. Am Nat 130:168–198

    Article  Google Scholar 

  • Idestam-Almquist J, Kautsky L (1995) Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper. Aquat Bot 52:205–216

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: impacts, adaptation and vulnerability. International Panel of Climate Change

  • James WF, Barko JW, Eakin HL (2004) Impacts of sediment dewatering and rehydration on sediment nitrogen concentration and macrophyte growth. Can J Fish Aquat Sci 61:538–546

    Article  Google Scholar 

  • James C, Fisher J, Russell V, Collings S, Moss B (2005) Nitrate availability and hydrophyte species richness in shallow lakes. Freshw Biol 50:1049–1063

    Article  CAS  Google Scholar 

  • Jampeetong A, Brix H (2009) Effects of NH4 + concentration on growth, morphology and NH4+ uptake kinetics of Salvinia natans. Ecol Eng 35:695–702

    Article  Google Scholar 

  • Jansson R, Laudon H, Johansson E (2007) The importance of groundwater discharge for plant species number in riparian zones. Ecology 88:131–139

    Article  PubMed  Google Scholar 

  • Jeppesen E, Sondergaard M, Kirsten C (1998) The structuring role of submerged macrophytes in lakes. Springer, New York

    Google Scholar 

  • Johansson ME, Nilsson C, Nilsson E (1996) Do rivers function as corridors for plant dispersal? J Veg Sci 7:593–598

    Article  Google Scholar 

  • Johnson WC (1994) Woodland expansion in the Platte River, Nebraska, patterns and causes. Ecol Monogr 64:45–84

    Article  Google Scholar 

  • Jones JI, Young JO, Eaton JW, Moss B (2002) The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton. J Ecol 90:12–24

    Article  Google Scholar 

  • Junk WJ, Piedade MTF (1993) Herbaceous plants of the Amazon floodplain near Manaus—species diversity and adaptations to the flood pulse. Amazoniana-Limnologia Et Oecologia Regionalis Systemae Fluminis Amazonas 12:467–484

    Google Scholar 

  • Kalliola R, Salo J, Puhakka M, Rajasilta M (1991) New site formation and colonizing vegetation in primary succession on the western Amazon floodplains. J Ecol 79:877–901

    Article  Google Scholar 

  • Karjalainen H, Stefansdottir G, Tuominen L, Kairesalo T (2001) Do submersed plants enhance microbial activity in sediment? Aquat Bot 69:1–13

    Article  Google Scholar 

  • Kautsky L (1988) Life strategies of aquatic soft bottom macrophytes. Oikos 53:126–135

    Article  Google Scholar 

  • Keddy P, Fraser LH (2000) Four general principles for the management and conservation of wetlands in large lakes: the role of water levels, nutrients, competitive hierarchies and centrifugal organization. Lakes Reserv Res Manag 5:177–185

    Article  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Khan FA, Ansari AA (2005) Eutrophication: an ecological vision. Bot Rev 71:449–482

    Article  Google Scholar 

  • Koch EW (2001) Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24:1–17

    Article  Google Scholar 

  • Koehl MAR (1984) How do benthic organisms withstand moving water? Am Zool 24:57–70

    Google Scholar 

  • Kohler A (1975) Submerse Makrophyten und ihre Gesellschaften als Indikatoren der Gewässerbelastung. Beiträge Naturkundlischen Forschung in Suedwestdeutschand Beihefte 34:149–159

    Google Scholar 

  • Kohler A, Brinkmeier R, Vollrath H (1974) Verbreitung und Indikatorwert der submersen Makrophyten in den Fließgewässern der Friedberger Au. Bericht der bayerischen Botanischen Gesellschaft zür Erforschung der heimischen Flora 45:5–36

    Google Scholar 

  • Korner S (2001) Development of submerged macrophytes in shallow Lake Muggelsee (Berlin, Germany) before and after its switch to the phytoplankton-dominated state. Archiv für Hydrobiologie 152:395–409

    Google Scholar 

  • Lacoul P, Freedman B (2006) Relationships between aquatic plants and environmental factors along a steep Himalayan altitudinal gradient. Aquat Bot 84:3–16

    Article  Google Scholar 

  • Lamers LPM, Smolders AJP, Roelofs JGM (2002) The restoration of fens in the Netherlands. Hydrobiologia 478:103–130

    Article  Google Scholar 

  • Lauridsen TL, Jeppesen E, Andersen FO (1993) The colonisation of submerged macrophytes in shallow fish manipulated lake Vaeng—impact of sediment composition and waterfowl grazing. Aquat Bot 46:1–15

    Article  Google Scholar 

  • Lehmann A, Castella E, Lachavanne JB (1997) Morphological traits and spatial heterogeneity of aquatic plants along sediment and depth gradients, Lake Geneva, Switzerland. Aquat Bot 55:281–299

    Article  Google Scholar 

  • Lenssen JPM, Menting FBJ, Van der Putten WH, Blom CWPM (1999) Effects of sediment type and water level on biomass production of wetland plant species. Aquat Bot 64:151–165

    Article  Google Scholar 

  • Lenssen JPM, Menting FBJ, Van den Putten WH, Blom CWPM (2000) Vegetative reproduction by species with different adaptations to shallow-flooded habitats. New Phytol 145:61–70

    Article  Google Scholar 

  • Litav M, Lehrer Y (1978) Effects of ammonium in water on Potamogeton lucens. Aquat Bot 5:127–138

    Article  CAS  Google Scholar 

  • Liu GH, Li W, Zhou J, Liu WZ, Yang D, Davy AJ (2006a) How does the propagule bank contribute to cyclic vegetation change in a lakeshore marsh with seasonal drawdown? Aquat Bot 84:137–143

    Article  Google Scholar 

  • Liu GH, Li W, Li EH, Yuan LY, Davy AJ (2006b) Landscape-scale variation in the seed banks of floodplain wetlands with contrasting hydrology in China. Freshw Biol 51:1862–1878

    Article  Google Scholar 

  • Maberly SC, Madsen TV (1998) Affinity for CO2 in relation to the ability of freshwater macrophytes to use HCO3 . Funct Ecol 12:99–106

    Article  Google Scholar 

  • Madsen TV, Cedergreen N (2002) Sources of nutrients to rooted submerged macrophytes growing in a nutrient-rich stream. Freshw Biol 47:283–291

    Article  Google Scholar 

  • Madsen TV, Sand-Jensen K, Beer S (1993) Comparison of photosynthetic performance and carboxylation capacity in a range of aquatic macrophytes of different growth forms. Aquat Bot 44:373–384

    Article  CAS  Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84

    Article  Google Scholar 

  • Madsen TV, Olesen B, Bagger J (2002) Carbon acquisition and carbon dynamics by aquatic isoetids. Aquat Bot 73:351–371

    Article  CAS  Google Scholar 

  • Mäemets H, Freiberg L (2007) Coverage and depth limits of macrophytes as tools for classification of lakes. Proc Estonian Acad Sci Biol Ecol 56:124–140

    Google Scholar 

  • Marion L, Paillisson J-M (2002) A mass balance assessment of the contribution of floating-leaved macrophytes in nutrient stocks in an eutrophic macrophyte-dominated lake. Aquat Bot 75:249–260

    Article  Google Scholar 

  • Martín J, Luque-Larena JJ, López P (2005) Factors affecting escape behavior of Iberian green frogs (Rana perezi). Can J Zool 83:1189–1195

    Article  Google Scholar 

  • Martin-Closas C, Wojcicki JJ, Fonolla L (2006) Fossil charophytes and hydrophytic angiosperms as indicators of lacustrine trophic change. A case study in the Miocene of Catalonia (Spain). Criyptogamie-Algologie 27:357–379

    Google Scholar 

  • Matthews D (2006) Global change: the water cycle freshens up. Nature 439:793–794

    Article  CAS  PubMed  Google Scholar 

  • McFarland DG, Barko JW, McCreary NJ (1992) Effects of sediment fertility and initial plant-density on growth of Hydrilla verticillata (LF) Royle and Potamogeton nodosus Poiret. J Freshw Ecol 7:191–200

    Google Scholar 

  • Mckee D, Hatton K, Eaton JW, Atkinson D, Atherton A, Harvey I, Moss B (2002) Effects of simulated climate warming on macrophytes in freshwater microcosm communities. Aquat Bot 74:71–83

    Article  Google Scholar 

  • Middelboe AL, Markager S (1997) Depth limits and minimum light requirements of freshwater macrophytes. Freshw Biol 37:553–568

    Article  Google Scholar 

  • Millenium-Ecosystem-Assessment (2005). Ecosystems and human well-being: wetlands and water. Synthesis. World Resource Institute, Washington, DC

  • Miller A, Cramer M (2005) Root nitrogen acquisition and assimilation. Plant Soil 274:1–36

    Article  CAS  Google Scholar 

  • Mooij WM, Hulsmann S, Domis LND, Nolet BA, Bodelier PLE, Boers PCM, Pires LMD, Gons HJ, Ibelings BW, Noordhuis R, Portielje R, Wolfstein K, Lammens E (2005) The impact of climate change on lakes in the Netherlands: a review. Aquat Ecol 39:381–400

    Article  CAS  Google Scholar 

  • Moore PA, Reddy KR, Graetz DA (1992) Water quality-nutrient transformations in sediments as influenced by oxygen supply. J Environ Qual 21:387–393

    Article  CAS  Google Scholar 

  • Mulholland PJ, Best GR, Coutant CC, Hornberger GM, Meyer JL, Robinson PJ, Stenberg JR, Turner RE, VeraHerrera F, Wetzel RG (1997) Effects of climate change on freshwater ecosystems of the South-Eastern United States and the Gulf Coast of Mexico. Hydrol Process 11:949–970

    Article  Google Scholar 

  • Mulhouse JM, De Steven D, Lide RF, Sharitz RR (2005) Effects of dominant species on vegetation change in Carolina bay wetlands following a multi-year drought. J Torrey Bot Soc 132:411–420

    Article  Google Scholar 

  • Murphy KJ (1988) Aquatic weed problems and their management: a review I. The worldwide scale of the aquatic weed problem. Crop Prot 7:232–248

    Article  Google Scholar 

  • Murphy KJ (2002) Plant communities and plant diversity in softwater lakes of Northern Europe. Aquat Bot 73:287–324

    Article  Google Scholar 

  • Nielsen SL, Sand-Jensen K (1993) Photosynthetic implications of heterophylly in Batrachium peltatum (Schrank) Presl. Aquat Bot 44:361–371

    Article  Google Scholar 

  • O’Hare MT, Hutchinson KA, Clarke RT (2007) The drag and reconfiguration experienced by five macrophytes from a lowland river. Aquat Bot 86:253–259

    Article  Google Scholar 

  • Odland A (1997) Development of vegetation in created wetlands in western Norway. Aquat Bot 59:45–62

    Article  Google Scholar 

  • Olde Venterink H, Vermaat JE, Pronk M, Wiegman F, van der Lee GEM, van den Hoorn MW, Higler LWG, Vehoeven JTA (2006) Importance of sediment deposition and denitrification for nutrient retention in floodplain wetlands. Appl Veg Sci 9:163–174

    Article  Google Scholar 

  • Olesen B, Madsen TV (2000) Growth and physiological acclimation to temperature and inorganic carbon availability by two submerged aquatic macrophyte species, Callitriche cophocarpa and Elodea canadensis. Funct Ecol 14:252–260

    Article  Google Scholar 

  • Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19:81–91

    Article  Google Scholar 

  • Pagano AM, Titus JE (2007) Submersed macrophyte growth at low pH: carbon source influences response to dissolved inorganic carbon enrichment. Freshw Biol 52:2412–2420

    Article  Google Scholar 

  • Pant HK (2007) Nonlinear effects of climate change on phosphorus stability in wetlands: concept and estimation. J Food Agric Environ 5:295–301

    CAS  Google Scholar 

  • Parsons M, McLoughlin CA, Kotschy KA, Rogers KH, Rountree MW (2005) The effects of extreme floods on the biophysical heterogeneity of river landscapes. Front Ecol Environ 3:487–494

    Article  Google Scholar 

  • Pasternack GB, Brush GS (2001) Seasonal Variations in Sedimentation and organic content in five plant associations on a Chesapeake Bay tidal freshwater delta. Estuar Coast Shelf Sci 53:93–106

    Article  Google Scholar 

  • Pezeshki SR (2001) Wetland plant responses to soil flooding. Environ Exp Bot 46:299–312

    Article  Google Scholar 

  • Pilon J, Santamaria L (2001) Seasonal acclimation in the photosynthetic and respiratory temperature responses of three submerged freshwater macrophyte species. New Phytol 151:659–670

    Article  CAS  Google Scholar 

  • Pip E, Robinson GGT (1984) A comparison of algal periphyton composition on eleven species of submerged macrophytes. Aquat Ecol 18:109–118

    Google Scholar 

  • Poff NL, Ward JV (1990) Physical habitat template of lotic systems: recovery in the context of historical pattern of spatiotemporal heterogeneity. Environ Manage 14:629–645

    Article  Google Scholar 

  • Pollock MM, Naiman RJ, Hanley TA (1998) Plant species richness in riparian wetlands—a test of biodiversity theory. Ecology 79:94–105

    Google Scholar 

  • Portnoy JW (1991) Summer oxygen depletion in a diked New-England estuary. Estuaries 14:122–129

    Article  CAS  Google Scholar 

  • Puijalon S, Sagnes P, Bornette G (2005) Adaptations to increasing hydraulic stress: morphology, hydrodynamics and fitness of two higher aquatic plant species. J Exp Bot 56:777–786

    Article  CAS  PubMed  Google Scholar 

  • Puijalon S, Léna JP, Rivière N, Champagne JY, Rostan JC, Bornette G (2008) Phenotypic plasticity in response to mechanical stress: hydrodynamic performance and fitness of 4 aquatic plant species. New Phytol 177:907–917

    Article  PubMed  Google Scholar 

  • Rascio N (2002) The underwater life of secondarily aquatic plants: some problems and solutions. Crit Rev Plant Sci 21:401–427

    Article  Google Scholar 

  • Ray AM, Rebertus AJ, Ray HL (2001) Macrophyte succession in Minnesota beaver ponds. Can J Bot 79:487–499

    Article  Google Scholar 

  • Redding TE, Devito KJ (2006) Particle densities of wetland soils in northern Alberta, Canada. Can J Soil Sci 86:57–60

    Google Scholar 

  • Riis T, Hawes I (2002) Relationships between water level fluctuations and vegetation diversity in shallow water of New Zealand lakes. Aquat Bot 74:133–148

    Article  Google Scholar 

  • Robach F, Thiébaut G, Trémolières M, Muller S (1996) A reference system for continental running waters: plant communities as bioindicators of increasing eutrophication in alkaline and acidic waters in north-east France. Hydrobiologia 340:67–76

    Article  CAS  Google Scholar 

  • Roberts E, Kroker J, Korner S, Nicklisch A (2003) The role of periphyton during the re-colonization of a shallow lake with submerged macrophytes. Hydrobiologia 506:525–530

    Article  Google Scholar 

  • Rosset V, Lehmann A, Oertli B (2010) Warmer and richer? Predicting the impact of climate warming on species richness in small temperate waterbodies. Glob Chang Biol 16:2376–2387

    Article  Google Scholar 

  • Rostan JC, Amoros C, Juget J (1987) The organic content of the surficial sediment : a method for the study of ecosystems development in abandoned river channels. Hydrobiologia 148:45–62

    Article  CAS  Google Scholar 

  • Rybicki NB, Carter V (1986) Effect of sediment depth and sediment type on the survival of Vallisneria americana Michx grown from tubers. Aquat Bot 24:233–240

    Article  Google Scholar 

  • Sajna N, Haler M, Skornik S, Kaligaric M (2007) Survival and expansion of Pistia stratiotes L. in a thermal stream in Slovenia. Aquat Bot 87:75–79

    Article  Google Scholar 

  • Sakura Y (1993) Groundwater flow estimated from temperatures in the Yonezawa basin, northeast Japan. Int Assoc Hydrogeol Publ 215:161–170

    Google Scholar 

  • Sand-Jensen K (2003) Drag and reconfiguration of freshwater macrophytes. Freshw Biol 48:271–283

    Article  Google Scholar 

  • Sand-Jensen K, Pedersen O (1999) Velocity gradients and turbulence around macrophyte stands in streams. Freshw Biol 42:315–328

    Article  Google Scholar 

  • Santamaria L (2002) Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecologica 23:137–154

    Article  Google Scholar 

  • Santamaria L, van Vierssen W (1997) Photosynthetic temperature responses of fresh- and brackish-water macrophytes: a review. Aquat Bot 58:135–150

    Article  Google Scholar 

  • Santamaria L, Figuerola J, Pilon JJ, Mjelde M, Green AJ, De Boer T, King RA, Gornall RJ (2003) Plant performance across latitude: the role of plasticity and local adaptation in an aquatic plant. Ecology 84:2454–2461

    Article  Google Scholar 

  • Sawada M, Viau AE, Gajewski K (2003) The biogeography of aquatic macrophytes in North America since the Last Glacial Maximum. J Biogeogr 30:999–1017

    Article  Google Scholar 

  • Scheffer M, Hosper SH, Meijer ML, Moss B, Jeppesen E (1993) Alternative equilibria in shallow lakes. Trends Ecol Evol 8:175–279

    Article  Google Scholar 

  • Schippers P, Vermaat JE, de Klein J, Mooij WM (2004) The effect of atmospheric carbon dioxide elevation on plant growth in freshwater ecosystems. Ecosystems 7:63–74

    Article  CAS  Google Scholar 

  • Schneider S (2007) Macrophyte trophic indicator values from a European perspective. Limnologica 37:281–289

    Google Scholar 

  • Schutten J (2005) Biomechanical limitations on macrophytes in shallow lakes. Proefschrift Universiteit van Amsterdam, The Netherlands

    Google Scholar 

  • Schutten J, Dainty J, Davy AJ (2005) Root anchorage and its significance for submerged plants in shallow lakes. J Ecol 93:556–571

    Article  Google Scholar 

  • Schwarz AM, Hawes I (1997) Effects of changing water clarity on characean biomass and species composition in a large oligotrophic lake. Aquat Bot 56:169–181

    Article  Google Scholar 

  • Schwarz WL, Malanson GP, Weirich FH (1996) Effect of landscape position on the sediment chemistry of abandoned-channel wetlands. Landsc Ecol 11:27–38

    Article  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold, London

    Google Scholar 

  • Sheldon RB, Boylen CW (1977) Maximum depth inhabited by aquatic vascular plants. Am Midl Nat 97:248–254

    Article  Google Scholar 

  • Smith FA, Walker NA (1980) Photosynthesis by aquatic plants: effects of unstirred layers in relation to assimilation of CO2 and HCO3 and to carbon isotopic discrimination. New Phytol 86:245–259

    Article  CAS  Google Scholar 

  • Smits AJM, van Avesaath PH, van der Velde G (1990) Germination requirements and seed-banks of some nymphaeid macrophytes: Nymphaea alba L., Nuphar lutea (L.) Sm. and Nymphoides peltata (Gmel.) O. Kuntze. Freshw Biol 24:315–326

    Article  Google Scholar 

  • Smolders AJP, Lucassen ECHET, Roelofs JGM (2002) The isoetid environment: biogeochemistry and threats. Aquat Bot 73:325–350

    Article  CAS  Google Scholar 

  • Smolders AJP, Lamers LPM, Lucassen ECHET, van der Velde G, Roelofs JGM (2006) Internal eutrophication: how it works and what to do about it—a review. Chem Ecol 22:93–111

    Article  CAS  Google Scholar 

  • Sorrell BK, Mendelssohn IA, McKee KL, Woods RA (2000) Ecophysiology of wetland plant roots: a modelling comparison of aeration in relation to species distribution. Ann Bot 86:675–685

    Article  Google Scholar 

  • Sousa WP (1984) The role of disturbance in natural communities. Ann Rev Ecol Syst 15:353–391

    Article  Google Scholar 

  • Sparks RE, Bayley PB, Kohler SL, Osborne LL (1990) Disturbance and recovery of large floodplain rivers. Environ Manag 14:699–709

    Article  Google Scholar 

  • Spence DHN (1982) The zonation of plants in freshwater lakes. Adv Ecol Res 12:37–125

    Article  Google Scholar 

  • Stansfield JH, Perrow MR, Tench LD, Jowitt AJD, Taylor AAL (1997) Submerged macrophytes as refuges for grazing Cladocera against fish [-3pt]predation: observations on seasonal changes in relation to macrophyte cover and predation pressure. Hydrobiologia 342–343:229–240

    Article  Google Scholar 

  • Strand JA, Weisner SEB (2001) Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). J Ecol 89:166–175

    Article  Google Scholar 

  • Stroh CL, De Steven D, Guntenspergen GR (2008) Effect of climate fluctuations on long-term vegetation dynamics in Carolina Bay wetlands. Wetlands 28:17–27

    Article  Google Scholar 

  • Szmeja J (1987) The ecology of Lobelia dortmanna L. 3. The plasticity of individuals along a gradient of increasing depth in oligotrophic lakes. Ekologia Polska-Polish J Ecol 35:545–558

    Google Scholar 

  • Szmeja J, Bazydlo E (2005) The effect of water conditions on the phenology and age structure of Luronium natans (L.) raf. populations. Acta Societatis Botanicorum Poloniae 74:253–262

    Google Scholar 

  • Titus JE, Sullivan PG (2001) Heterophylly in the yellow waterlily, Nuphar variegata (Nymphaeaceae): effects of [CO2], natural sediment type, and water depth. Am J Bot 88:1469–1478

    Article  Google Scholar 

  • Tockner K, Stanford JA (2002) Riverine flood plains: present state and future trends. Environ Conserv 29:308–330

    Google Scholar 

  • Ueno O (2001) Environmental regulation of C-3 and C-4 differentiation in the amphibious sedge Eleocharis vivipara. Plant Physiol 127:1524–1532

    Article  CAS  PubMed  Google Scholar 

  • Usherwood JR, Ennos AR, Ball DJ (1997) Mechanical adaptations in terrestrial and aquatic buttercups to their respective environments. J Exp Bot 48:1469–1475

    Article  CAS  Google Scholar 

  • Van den Brink FWB, De Leuw JPHM, Van der Velde G, Verheggen GM (1993) Impact of hydrology on the chemistry and phytoplankton development in floodplain lakes along the lower Rhine and Meuse. Biogeochemistry 19:103–128

    Article  Google Scholar 

  • Van der Valk AG (2005) Water level fluctuations in North American prairie wetlands. Hydrobiologia 539:171–188

    Article  Google Scholar 

  • Van der Valk AG, Davis CB (1979) A reconstruction of the recent vegetational history of a prairie marsh, Eagle Lake, Iowa, from its seed bank. Aquat Bot 6:29–51

    Article  Google Scholar 

  • van Geest GJ, Wolters H, Roozen FCJM, Coops H, Roijackers RMM, Buijse AD, Scheffer M (2005) Water-level fluctuations affect macrophyte richness in floodplain lakes. Hydrobiologia 539:239–248

    Article  Google Scholar 

  • van Ginkel LC, Bowes G, Reiskind JB, Prins HBA (2001) A CO2-flux mechanism operating via pH-polarity in Hydrilla verticillata leaves with C-3 and C-4 photosynthesis. Photosynth Res 68:81–88

    Article  PubMed  Google Scholar 

  • Vermaat JE, Santamaria L, Roos PJ (2000) Water flow across and sediment trapping in submerged macrophyte beds of contrasting growth form. Archiv für Hydrobiologie 148:549–562

    CAS  Google Scholar 

  • Vestergaard O, Sand-Jensen K (2000) Alkalinity and trophic state regulate aquatic plant distribution in Danish lakes. Aquat Bot 67:85–107

    Article  Google Scholar 

  • Vogel S (1984) Drag and flexibility in sessile organisms. Am Zool 24:37–44

    Google Scholar 

  • Vogel S (1994) Life in moving fluids: the physical biology of flow. Princeton University Press, Princeton

    Google Scholar 

  • Ward JV, Tockner K (2001) Biodiversity: towards a unifying theme for river ecology. Freshw Biol 46:807–819

    Article  Google Scholar 

  • Weisner SEB, Strand JA, Sandsten H (1997) Mechanisms regulating abundance of submerged vegetation in shallow eutrophic lakes. Oecologia 109:592–599

    Article  Google Scholar 

  • Wells CL, Pigliucci M (2000) Adaptive phenotypic plasticity: the case of heterophylly in aquatic plants. Perspect Plant Ecol Evol Syst 3:1–18

    Article  Google Scholar 

  • Weltzin JL, Bridgham SD, Pastor J, Chen J, Harth C (2003) Potential effects of warming and drying on peatland plant community composition. Glob Chang Biol 9:141–151

    Article  Google Scholar 

  • White PS, Jentsch A (2001) The search for generality in studies of disturbance and ecosystem dynamics. Prog Bot 62:399–450

    Google Scholar 

  • White PS, Pickett STA (1985). Natural disturbance and patch dynamics: an introduction. In: Pickett STA, White PS (eds) The ecology of natural disturbance and patch dynamics. Academic Press Inc., Orlando, pp 3–13

  • Wisheu IC, Keddy PA (1992) Competition and centrifugal organization of plant communities: theory and tests. J Veg Sci 3:147–156

    Article  Google Scholar 

  • Xing Y, Xie P, Yang H, Wu A, Ni L (2006) The change of gaseous carbon fluxes following the switch of dominant producers from macrophytes to algae in a shallow subtropical lake of China. Atmos Environ 40:8034–8043

    Article  CAS  Google Scholar 

  • Xiong S, Nilsson C, Johansson ME, Jansson R (2001) Responses of riparian plants to accumulation of silt and plant litter: the importance of plant traits. J Veg Sci 12:481–490

    Article  Google Scholar 

Download references

Acknowledgments

This work was done under the aegis of the Zone Atelier Bassin du Rhône. Two anonymous reviewers are gratefully acknowledged for their helpful remarks on the manuscript. Patricia Hulmes provided linguistic assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gudrun Bornette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bornette, G., Puijalon, S. Response of aquatic plants to abiotic factors: a review. Aquat Sci 73, 1–14 (2011). https://doi.org/10.1007/s00027-010-0162-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-010-0162-7

Keywords

Navigation