[go: up one dir, main page]

Skip to main content
Log in

Quantifying electrocardiogram RT-RR variability interactions

  • Cardiac Measurement
  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

A dynamic linear parametric model is designed to quantify the dependence of ventricular repolarisation duration variability on heart period changes and other immeasurable factors. The model analyses the beat-to-beat series of the RR duration and of the interval between R- and T-wave apexes (RT period). Directly from these two signals, a parametric identification procedure and spectral decomposition techniques allow RT variability to be divided into RR-related and RR-unrelated parts and allow the RT-RR transfer function to be calculated. RT variability is driven by RR changes at low frequency (LF, around 0.1 Hz) and high frequency (HF, at the respiratory rate), whereas, at very low frequencies, the RR-unrelated contribution to the total RT variability is remarkable. During tilt at LF the RR-related RT percentage power increases (p<0.02), the RR-unrelated RT percentage power remains unchanged, the gain of the RT-RR relationship largely increases (p<0.001), and the phase is not significantly modified. Both the RR-related and the RR-unrelated RT percentage powers at LF are not affected by controlled respiration, and an increase in the RT-RR gain at HF is observed (p<0.02). The proposed analysis may help to describe the regulation of the ventricular repolarisation process and to extract indexes quantifying the coupling between heart period and ventricular repolarisation interval changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akaike, H. (1974): ‘A new look at the statistical model identification’,IEEE Trans. Autom. Contr,19, pp. 716–723

    Article  MATH  MathSciNet  Google Scholar 

  • Baselli, G., Porta, A., Ferrari, G., Cerutti, S., Rimoldi, O., Pagani, M., andMalliani, A. (1993): ‘Multivariate ARMA spectral decomposition in the assessment of cardiovascular variabilities’. Comp. in Cardiol. Conf., (IEEE Computer Society Press), pp. 731–734

  • Baselli, G., Porta, A., Rimoldi, O., Pagani, M., andCerutti S. (1997): ‘Spectral decomposition in multi-channel recordings based on multi-variate parametric identification’,IEEE Trans.,BME-44, pp. 1092–1101

    Google Scholar 

  • Bazett, H. C. (1920): ‘An analysis of the time-relations of electrocardiograms’,Heart,7, pp. 353–370

    Google Scholar 

  • Bexton, R. S., Vallin, H. O., andCamm, A. J. (1986): ‘Diurnal variation of the QT interval: influence of the autonomic nervous system’,Br. Heart J.,55, pp. 253–258

    Google Scholar 

  • Browne, K. F., Prystowsky, E., Heger, J. J., andZipes, D. P. (1983): ‘Modulation of the Q-T interval by the autonomic nervous system’,Pace,6, pp. 1050–1055

    Google Scholar 

  • Franz, M. R., Swerdlow, C. D., Liem, B. L., andSchaefer, J. (1989): ‘Cycle-length dependence of human ventricular action potential duration in steady and non-steady state’,in Butrous, G. S., andSchwartz, P. J. (Eds.): ‘Clinical aspects of ventricular repolarization’ (Farend Press, London) pp. 163–174

    Google Scholar 

  • Johnsen, S. J., andAndersen, N. (1978): ‘On power estimation in maximum entropy spectral analysis’,Geophysics,43, pp. 681–690

    Article  Google Scholar 

  • Kay, S. M. (1988): ‘Modern spectral analysis: theory and applications’ (Prentice Hall, Englewood Cliffs, New Jersey)

    Google Scholar 

  • Lau, C. P. andWard, J. (1989): ‘QT hysteresis: the effects of an abrupt change in pacing rate’ inButrous, G. S. andSchwartz, P. J. (Eds.): ‘Clinical aspects of ventricular repolarization’ (Farrand Press, London) pp. 175–184

    Google Scholar 

  • Ljung, L., (1987): ‘System identification. Theory and methods’ (Prentice Hall, Englewood Cliffs, New Jersey)

    Google Scholar 

  • Lombardi, F., Sandrone, G., Porta, A., Torzillo, D., Terranova, G., Baselli, G., Cerutti, S., andMalliani, A. (1996): ‘Spectral analysis of short term R-Tapex interval variability during sinus rhythm and fixed atrial rate’,Eur. Heart J.,17, pp. 769–778

    Google Scholar 

  • Maison Blanche, P., Catuli, D., Fayn, J., andCoumel, P., (1996): ‘QT interval, heart rate and ventricular arrhythmias’,in Moss, A., andStern, S., (Eds.): ‘Non-invasive electrocardiology. Aspects of Holter monitoring’ (W. B. Saunders Company Ltd, London) pp. 383–404

    Google Scholar 

  • Merri, M., Alberti, M., andMoss, A. J. (1993): ‘Dynamic analysis of ventricular repolarisation duration from 24-hour Holter recordings’,IEEE Trans.,BME-40, pp. 1219–1225

    Google Scholar 

  • Nollo, G., Speranza, G., Grasso, R., Bonamini, R., Mangiardi, L., andAntolini, R. (1992): ‘Spontaneous beat-to-beat variability of the ventricular repolarisation duration’,J. Electrocardiol.,25, pp. 9–17

    Article  Google Scholar 

  • Porta, A., Lombardi, F., Benedetti, M., Sandrone, G., Baselli, G., Malliani, A., andCerutti, S., (1994): ‘Reliability of the measurement of the RT variability’. Comp. in Cardiol. Conf. (IEEE Computer Society Press) pp. 217–220

  • Porta, A., Baselli, G. E., Caiani, G. Scarpellini, Sandrone, G., Malliani, A., Cerutti, S., andLombardi, F., (1996): ‘Model for RT-RR variability interaction assessment’. Comp. in Cardiol. Conf., (IEEE Computer Society Press) pp. 281–284

  • Schwartz, P. J., Periti, M., andMalliani, A., (1975) ‘The long Q-T syndrome’,Am. Heart J.,89, pp. 378–390

    Article  Google Scholar 

  • Söderström, T. (1974): ‘On the convergence properties of the generalised least squares identification method’,Automatica,10, pp. 617–626

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Porta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porta, A., Baselli, G., Caiani, E. et al. Quantifying electrocardiogram RT-RR variability interactions. Med. Biol. Eng. Comput. 36, 27–34 (1998). https://doi.org/10.1007/BF02522854

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02522854

Keywords

Navigation