[go: up one dir, main page]

ARTICLE   Open Access     Cite

Duration of frozen days show a strong decline in the Northern Hemisphere mainly driven by autumn temperature increase

    Show all affliationsShow less
More Information
  • Author Bio: Yuan Q
  • Corresponding author: zlp62@whu.edu.cn
    1. Frozen days in the Northern Hemisphere have decreased by 0.17 days per year since 1990.

      The greatest declines were observed in Belarus, Ukraine, Alaska, and the Yukon region in Canada.

      Rising autumn temperatures, spring precipitation and vegetation changes primarily drive this decline.

      The reduction in frozen days s is expected to accelerate for the highest and moderate emission scenarios.

  • Thawing permafrost releases methane and carbon dioxide to the atmosphere, contributing to positive feedback loop in global warming. Therefore, accurately monitoring changes in the permafrost freeze–thaw status is imperative. However, the spatiotemporal evolution and potential driving factors remain elusive. Here, we investigated the freeze–thaw status and driving factors by developing novel machine learning models trained on satellite and in situ observations in the Northern Hemisphere. We find that the frozen duration decreased on average by 0.17 days/yr since 1990 with the highest decrease of approximately up to 1.0 days/yr in parts of Belarus and Ukraine, followed by the Yukon region in Canada and Alaska. This decrease is primarily driven by temperatures in boreal autumn and spring and by precipitation and vegetation cover in boreal spring. The frozen duration is projected to decline further with reduction rates doubling until 2050 for the highest and moderate emission scenarios.
  • 加载中
  • [1] Dobinski W. (2011). Permafrost. Earth-Science Rev. 108:158−169. DOI:10.1016/j.earscirev.2011.06.007

    View in Article CrossRef Google Scholar

    [2] Schuur E. A., McGuire A. D., Schadel C., et al. (2015). Climate change and the permafrost carbon feedback. Nature 520:171−179. DOI:10.1038/nature14338

    View in Article CrossRef Google Scholar

    [3] Biskaborn B. K., Smith S. L., Noetzli J., et al. (2019). Permafrost is warming at a global scale. Nat. Commun. 10:264. DOI:10.1038/s41467-018-08240-4

    View in Article CrossRef Google Scholar

    [4] Running S. W., Way J., McDonald K., et al. (1999). Radar remote sensing proposed for monitoring freeze‐thaw transitions in boreal regions. Eos, Trans. Am. Geophys. Union 80 :213−221.

    View in Article Google Scholar

    [5] Gao B., Yang D., Qin Y., et al. (2018). Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai–Tibetan Plateau. The Cryosphere 12:657−673. DOI:10.5194/tc-12-657-2018

    View in Article CrossRef Google Scholar

    [6] Liu Z., Kimball J. S., Ballantyne A. P., et al. (2022). Respiratory loss during late-growing season determines the net carbon dioxide sink in northern permafrost regions. Nat. Commun. 13:5626. DOI:10.1038/s41467-022-33293-x

    View in Article CrossRef Google Scholar

    [7] Turetsky M. R., Abbott B. W., Jones M. C., et al. (2020). Carbon release through abrupt permafrost thaw. Nat. Geosci. 13:138−143. DOI:10.1038/s41561-019-0526-0

    View in Article CrossRef Google Scholar

    [8] Zimov S. A., Schuur E. A. G. and Chapin F. S. (2006). Permafrost and the Global Carbon Budget. Science 312:1612−1613. DOI:10.1126/science.1128908

    View in Article CrossRef Google Scholar

    [9] Walter Anthony K. M., Anthony P., Grosse G., et al. (2012). Geologic methane seeps along boundaries of Arctic permafrost thaw and melting glaciers. Nat. Geosci. 5:419−426. DOI:10.1038/ngeo1480

    View in Article CrossRef Google Scholar

    [10] Haeberli W. and Beniston M. (1998). Climate change and its impacts on glaciers and permafrost in the alps. Ambio 27:258−265.

    View in Article Google Scholar

    [11] Teufel B. and Sushama L. (2019). Abrupt changes across the Arctic permafrost region endanger northern development. Nat. Clim. Change 9:858−862. DOI:10.1038/s41558-019-0614-6

    View in Article CrossRef Google Scholar

    [12] IPCC (2022). Climate change 2022: impacts, adaptation, and vulnerability. Cambridge University Press.

    View in Article Google Scholar

    [13] Smith S. L., O’Neill H. B., Isaksen K., et al. (2022). The changing thermal state of permafrost. Nat. Rev. Earth Environ. 3:10−23. DOI:10.1038/s43017-021-00240-1

    View in Article CrossRef Google Scholar

    [14] Atchley A. L., Painter S. L., Harp D. R., et al. (2015). Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geosci. Model Dev. 8 :2701-2722. DOI:10.5194/gmd-8-2701-2015.

    View in Article Google Scholar

    [15] Oldenborger G. A., Short N. and LeBlanc A.-M. (2022). Permafrost thaw sensitivity prediction using surficial geology, topography, and remote-sensing imagery: a data-driven neural network approach. Can. J. of Earth Sci. 59:897−913. DOI:10.1139/cjes-2021-0117

    View in Article CrossRef Google Scholar

    [16] Gao H., Nie N., Zhang W., et al. (2020). Monitoring the spatial distribution and changes in permafrost with passive microwave remote sensing. ISPRS J. Photogramm. Remote Sens. 170:142−155. DOI:10.1016/j.isprsjprs.2020.10.011

    View in Article CrossRef Google Scholar

    [17] Zhang T. and Armstrong R. L. (2001). Soil freeze/thaw cycles over snow-free land detected by passive microwave remote sensing. Geophys. Res. Lett. 28:763−766. DOI:10.1029/2000GL011952

    View in Article CrossRef Google Scholar

    [18] Li T., Shen H., Yuan Q., et al. (2017). Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach. Geophys. Res. Lett. 44 :11,985-911,993. DOI:/10.1002/2017GL075710.

    View in Article Google Scholar

    [19] Ma H., Zeng J., Zhang X., et al. (2024). Surface soil moisture from combined active and passive microwave observations: Integrating ASCAT and SMAP observations based on machine learning approaches. Remote Sens. Environ. 308:114197. DOI:10.1016/j.rse.2024.114197

    View in Article CrossRef Google Scholar

    [20] Alerskans E., Zinck A.-S. P., Nielsen-Englyst P., et al. (2022). Exploring machine learning techniques to retrieve sea surface temperatures from passive microwave measurements. Remote Sens. Environ. 281 . DOI:10.1016/j.rse.2022.113220.

    View in Article Google Scholar

    [21] Xiao X., Zhang T., Zhong X., et al. (2018). Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sens. Environ. 210:48−64. DOI:10.1016/j.rse.2018.03.008

    View in Article CrossRef Google Scholar

    [22] Cuo L., Zhang Y., Bohn T. J., et al. (2015). Frozen soil degradation and its effects on surface hydrology in the northern Tibetan Plateau. J. Geophys. Res. Atmos. 120:8276−8298. DOI:10.1002/2015JD023193

    View in Article CrossRef Google Scholar

    [23] Dai L., Guo X., Zhang F., et al. (2019). Seasonal dynamics and controls of deep soil water infiltration in the seasonally-frozen region of the Qinghai-Tibet plateau. J. Hydrol. 571:740−748. DOI:10.1016/j.jhydrol.2019.02.021

    View in Article CrossRef Google Scholar

    [24] Heijmans M. M., Magnússon R. Í., Lara M. J., et al. (2022). Tundra vegetation change and impacts on permafrost. Nat. Rev. Earth Enviro. 3:68−84. DOI:10.1038/s43017-021-00233-0

    View in Article CrossRef Google Scholar

    [25] Lehrsch G., Sojka R., Carter D., et al. (1991). Freezing effects on aggregate stability affected by texture, mineralogy, and organic matter. Soil Sci. Soc. Am. J. 55:1401−1406. DOI:10.2136/sssaj1991.03615995005500050033x

    View in Article CrossRef Google Scholar

    [26] Yuan Q., Shen H., Li T., et al. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sens. Environ. 241:111716. DOI:10.1016/j.rse.2020.111716

    View in Article CrossRef Google Scholar

    [27] Polikar R. (2012). Ensemble learning. Ensemble machine learning: Methods and applications, pp:1-34. DOI:10.1007/978-1-4419-9326-7_1.

    View in Article Google Scholar

    [28] Yang J., Jiang L., Lemmetyinen J., et al. (2021). Improving snow depth estimation by coupling HUT-optimized effective snow grain size parameters with the random forest approach. Remote Sens. Environ. 264:112630. DOI:10.1016/j.rse.2021.112630

    View in Article CrossRef Google Scholar

    [29] Xu Y., Wang L., Ma Z., et al. (2019). Spatially explicit model for statistical downscaling of satellite passive microwave soil moisture. IEEE Trans. Geosci. and Remote Sens. 58:1182−1191. DOI:10.1109/TGRS.2019.2944421

    View in Article CrossRef Google Scholar

    [30] Ni J., Wu T., Zhu X., et al. (2021). Simulation of the present and future projection of permafrost on the Qinghai‐Tibet Plateau with statistical and machine learning models. J. Geophys. Res. Atmos. 126:e2020JD033402. DOI:10.1029/2020JD033402

    View in Article CrossRef Google Scholar

    [31] Siewert M. B. (2018). High-resolution digital mapping of soil organic carbon in permafrost terrain using machine learning: a case study in a sub-Arctic peatland environment. Biogeosciences 15:1663−1682. DOI:10.5194/bg-15-1663-2018

    View in Article CrossRef Google Scholar

    [32] Sagi O. and Rokach L. (2018). Ensemble learning: A survey. WIREs Data Min. Knowl. Discov. 8:e1249. DOI:10.1002/widm.1249

    View in Article CrossRef Google Scholar

    [33] Yang Q., Kim J., Cho Y., et al. (2023). A synchronized estimation of hourly surface concentrations of six criteria air pollutants with GEMS data. npj Clim. Atmos. Sci. 6 :94 . DOI:10.1038/s41612-023-00407-1.

    View in Article Google Scholar

    [34] Reichstein M., Camps-Valls G., Stevens B., et al. (2019). Deep learning and process understanding for data-driven Earth system science. Nature 566:195−204. DOI:10.1038/s41586-019-0912-1

    View in Article CrossRef Google Scholar

    [35] Liu X., Pei F., Wen Y., et al. (2019). Global urban expansion offsets climate-driven increases in terrestrial net primary productivity. Nat. Commun. 10:5558. DOI:10.1038/s41467-019-13462-1

    View in Article CrossRef Google Scholar

    [36] Webb E. E., Liljedahl A. K., Cordeiro J. A., et al. (2022). Permafrost thaw drives surface water decline across lake-rich regions of the Arctic. Nat. Clim. Change 12:841−846. DOI:10.1038/s41558-022-01455-w

    View in Article CrossRef Google Scholar

    [37] Lundberg, S. (2017). A unified approach to interpreting model predictions. arXiv preprint arXiv:1705.07874.

    View in Article Google Scholar

    [38] Kim Y., Kimball J. S., Glassy J., et al. (2017). An extended global Earth system data record on daily landscape freeze–thaw status determined from satellite passive microwave remote sensing. Earth Syst. Sci. Data 9:133−147. DOI:10.5194/essd-9-133-2017

    View in Article CrossRef Google Scholar

    [39] Kim Y., Kimball J. S., McDonald K. C., et al. (2011). Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing. IEEE Trans. Geosci. Remote Sens. 49:949−960. DOI:10.1109/tgrs.2010.2070515

    View in Article CrossRef Google Scholar

    [40] Hu T., Zhao T., Zhao K., et al. (2019). A continuous global record of near-surface soil freeze/thaw status from AMSR-E and AMSR2 data. Int. J. Remote Sens. 40:6993−7016. DOI:10.1080/01431161.2019.1597307

    View in Article CrossRef Google Scholar

    [41] Amante C. and Eakins B. W. (2009). ETOPO1 arc-minute global relief model : procedures, data sources and analysis.

    View in Article Google Scholar

    [42] Meehl G. A., Boer G. J., Covey C., et al. (2000). The Coupled Model Intercomparison Project (CMIP). Bull. Am. Meteorol. Soc. 81:313−318. DOI:2.3.CO;2">10.1175/1520-0477(2000)081<0313:TCMIPC>2.3.CO;2.

    View in Article Google Scholar

    [43] Eyring V., Bony S., Meehl G. A., et al. (2016). Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9:1937−1958. DOI:10.5194/gmd-9-1937-2016

    View in Article CrossRef Google Scholar

    [44] Meinshausen M., Nicholls Z. R. J., Lewis J., et al. (2020). The shared socio-economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci. Model Dev. 13:3571−3605. DOI:10.5194/gmd-13-3571-2020

    View in Article CrossRef Google Scholar

    [45] Friedl M. A., Sulla-Menashe D., Tan B., et al. (2010). MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114:168−182. DOI:10.1016/j.rse.2009.08.016

    View in Article CrossRef Google Scholar

    [46] MARKUS KOTTEK, JÜRGEN GRIESER, CHRISTOPH BECK, et al. (2006). World Map of the Köppen-Geiger climate classification updated. Meteorol. Z. 15:259−263. DOI:10.1127/0941-2948/2006/0130

    View in Article CrossRef Google Scholar

    [47] Obu J., Westermann S., Bartsch A., et al. (2019). Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth Sci. Rev. 193:299−316. DOI:10.1016/j.earscirev.2019.04.023

    View in Article CrossRef Google Scholar

    [48] Hengl T., Mendes de Jesus J., Heuvelink G. B. M., et al. (2017). SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12:e0169748. DOI:10.1371/journal.pone.0169748

    View in Article CrossRef Google Scholar

    [49] Belgiu M. and Drăguţ L. (2016). Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 114:24−31. DOI:10.1016/j.isprsjprs.2016.01.011

    View in Article CrossRef Google Scholar

    [50] Chen T. and Guestrin C. (2016). XGBoost: A scalable tree boosting system. Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Association for Computing Machinery.

    View in Article Google Scholar

    [51] Ke G., Meng Q., Finley T., et al. (2017). LightGBM: A highly efficient gradient boosting decision tree. Advances in Neural Information Processing Systems, 30. https://proceedings.neurips.cc/paper/2017/hash/6449f44a102fde848669bdd9eb6b76fa-Abstract.html

    View in Article Google Scholar

  • Cite this article:

    Yuan Q., Zhong W., Yang Q., et al. (2025). Duration of frozen days show a strong decline in the Northern Hemisphere mainly driven by autumn temperature increase. The Innovation Geoscience 3:100118. https://doi.org/10.59717/j.xinn-geo.2024.100118
    Yuan Q., Zhong W., Yang Q., et al. (2025). Duration of frozen days show a strong decline in the Northern Hemisphere mainly driven by autumn temperature increase. The Innovation Geoscience 3:100118. https://doi.org/10.59717/j.xinn-geo.2024.100118

Figures(6)    

Share

  • Share the QR code with wechat scanning code to friends and circle of friends.

Article Metrics

Article views(813) PDF downloads(207) Cited by(0)

Relative Articles

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint