Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 Nov 2024 (v1), last revised 31 Jan 2025 (this version, v2)]
Title:Orthogonal Subspace Decomposition for Generalizable AI-Generated Image Detection
View PDF HTML (experimental)Abstract:AI-generated images (AIGIs), such as natural or face images, have become increasingly realistic and indistinguishable, making their detection a critical and pressing challenge. In this paper, we start from a new perspective to excavate the reason behind the failure generalization in AIGI detection, named the \textit{asymmetry phenomenon}, where a naively trained detector tends to favor overfitting to the limited and monotonous fake patterns, causing the feature space to become highly constrained and low-ranked, which is proved seriously limiting the expressivity and generalization. One potential remedy is incorporating the pre-trained knowledge within the vision foundation models (higher-ranked) to expand the feature space, alleviating the model's overfitting to fake. To this end, we employ Singular Value Decomposition (SVD) to decompose the original feature space into two orthogonal subspaces. By freezing the principal components and adapting only the remained components, we preserve the pre-trained knowledge while learning forgery-related patterns. Compared to existing full-parameters and LoRA-based tuning methods, we explicitly ensure orthogonality enabling the higher rank of the whole feature space, effectively minimizing overfitting and enhancing generalization. Extensive experiments with our deep analysis on both deepfake and synthetic image detection benchmarks demonstrate superior generalization performance in detection.
Submission history
From: Zhiyuan Yan [view email][v1] Sat, 23 Nov 2024 19:10:32 UTC (12,702 KB)
[v2] Fri, 31 Jan 2025 17:31:54 UTC (13,677 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.