Computer Science > Machine Learning
[Submitted on 14 Nov 2024]
Title:Laplace Transform Interpretation of Differential Privacy
View PDF HTML (experimental)Abstract:We introduce a set of useful expressions of Differential Privacy (DP) notions in terms of the Laplace transform of the privacy loss distribution. Its bare form expression appears in several related works on analyzing DP, either as an integral or an expectation. We show that recognizing the expression as a Laplace transform unlocks a new way to reason about DP properties by exploiting the duality between time and frequency domains. Leveraging our interpretation, we connect the $(q, \rho(q))$-Rényi DP curve and the $(\epsilon, \delta(\epsilon))$-DP curve as being the Laplace and inverse-Laplace transforms of one another. This connection shows that the Rényi divergence is well-defined for complex orders $q = \gamma + i \omega$. Using our Laplace transform-based analysis, we also prove an adaptive composition theorem for $(\epsilon, \delta)$-DP guarantees that is exactly tight (i.e., matches even in constants) for all values of $\epsilon$. Additionally, we resolve an issue regarding symmetry of $f$-DP on subsampling that prevented equivalence across all functional DP notions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.