Computer Science > Programming Languages
[Submitted on 5 Nov 2024]
Title:LoopSCC: Towards Summarizing Multi-branch Loops within Determinate Cycles
View PDF HTML (experimental)Abstract:Analyzing programs with loops is a challenging task, suffering from potential issues such as indeterminate number of iterations and exponential growth of control flow complexity. Loop summarization, as a static analysis method for concrete semantic interpretation, receives increasing focuses. It produces symbolic expressions semantically equivalent to the loop program. However, current loop summarization methods are only suitable for single-branch loops or multi-branch loops with simple cycles, without supporting complex loops with irregular branch-to-branch transitions. In this paper, we proposed LoopSCC, a novel loop summarization technique, to achieve concrete semantic interpretation on complex loop. LoopSCC analyzes the control flow at the granularity of single-loop-path and applies the strongly connected components (SCC for short) for contraction and simplification, resulting in the contracted single-loop-path graph (CSG for short). Based on the control flow information provided by the CSG, we can convert the loop summary into a combination of SCC summaries. When an SCC contains irregular branch-to-branch transitions, we propose to explore a convergent range to identify the determinate cycles of different execution paths, referred as oscillatory interval. The loop summarization composed of both iteration conditions and execution operations can eventually be derived recursively. Extensive experiments compared to six state-of-the-art loop interpretation methods are conducted to evaluate the effectiveness of LoopSCC. From the results, LoopSCC outperforms comparative methods in both interpretation accuracy and application effectiveness. Especially, LoopSCC achieves a 100% interpretation accuracy on public common-used benchmark. A systematical study for loop properties on three large-scale programs illustrates that LoopSCC presents outstanding scalability for real-world loop programs.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.