Computer Science > Computational Engineering, Finance, and Science
[Submitted on 28 Oct 2024 (v1), last revised 30 Oct 2024 (this version, v2)]
Title:History-Matching of Imbibition Flow in Multiscale Fractured Porous Media Using Physics-Informed Neural Networks (PINNs)
View PDF HTML (experimental)Abstract:We propose a workflow based on physics-informed neural networks (PINNs) to model multiphase fluid flow in fractured porous media. After validating the workflow in forward and inverse modeling of a synthetic problem of flow in fractured porous media, we applied it to a real experimental dataset in which brine is injected at a constant pressure drop into a CO2 saturated naturally fractured shale core plug. The exact spatial positions of natural fractures and the dynamic in-situ distribution of fluids were imaged using a CT-scan setup. To model the targeted system, we followed a domain decomposition approach for matrix and fractures and a multi-network architecture for the separate calculation of water saturation and pressure. The flow equations in the matrix, fractures and interplay between them were solved during training. Prior to fully-coupled simulations, we proposed pre-training the model. This aided in a more efficient and successful training of the coupled system. Both for the synthetic and experimental inverse problems, we determined flow parameters within the matrix and the fractures. Multiple random initializations of network and system parameters were performed to assess the uncertainty and uniqueness of the results. The results confirmed the precision of the inverse calculated parameters in retrieving the main flow characteristics of the system. The consideration of multiscale matrix-fracture impacts is commonly overlooked in existing workflows. Accounting for them led to several orders of magnitude variations in the calculated flow properties compared to not accounting for them. To the best of our knowledge, the proposed PINNs-based workflow is the first to offer a reliable and computationally efficient solution for inverse modeling of multiphase flow in fractured porous media, achieved through history-matching noisy and multi-fidelity experimental measurements.
Submission history
From: Jassem Abbasi Mr [view email][v1] Mon, 28 Oct 2024 07:41:26 UTC (19,693 KB)
[v2] Wed, 30 Oct 2024 12:07:17 UTC (19,693 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.