Computer Science > Information Retrieval
[Submitted on 16 Oct 2024]
Title:Unifying Economic and Language Models for Enhanced Sentiment Analysis of the Oil Market
View PDFAbstract:Crude oil, a critical component of the global economy, has its prices influenced by various factors such as economic trends, political events, and natural disasters. Traditional prediction methods based on historical data have their limits in forecasting, but recent advancements in natural language processing bring new possibilities for event-based analysis. In particular, Language Models (LM) and their advancement, the Generative Pre-trained Transformer (GPT), have shown potential in classifying vast amounts of natural language. However, these LMs often have difficulty with domain-specific terminology, limiting their effectiveness in the crude oil sector. Addressing this gap, we introduce CrudeBERT, a fine-tuned LM specifically for the crude oil market. The results indicate that CrudeBERT's sentiment scores align more closely with the WTI Futures curve and significantly enhance price predictions, underscoring the crucial role of integrating economic principles into LMs.
Submission history
From: Albert Weichselbraun [view email][v1] Wed, 16 Oct 2024 11:41:24 UTC (6,860 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.