Computer Science > Computation and Language
[Submitted on 26 Sep 2024]
Title:The Hard Positive Truth about Vision-Language Compositionality
View PDF HTML (experimental)Abstract:Several benchmarks have concluded that our best vision-language models (e.g., CLIP) are lacking in compositionality. Given an image, these benchmarks probe a model's ability to identify its associated caption amongst a set of compositional distractors. In response, a surge of recent proposals show improvements by finetuning CLIP with distractors as hard negatives. Our investigations reveal that these improvements have, in fact, been significantly overstated -- because existing benchmarks do not probe whether finetuned vision-language models remain invariant to hard positives. By curating an evaluation dataset with 112,382 hard negatives and hard positives, we uncover that including hard positives decreases CLIP's performance by 12.9%, while humans perform effortlessly at 99%. CLIP finetuned with hard negatives results in an even larger decrease, up to 38.7%. With this finding, we then produce a 1,775,259 image-text training set with both hard negative and hard positive captions. By training with both, we see improvements on existing benchmarks while simultaneously improving performance on hard positives, indicating a more robust improvement in compositionality. Our work suggests the need for future research to rigorously test and improve CLIP's understanding of semantic relationships between related "positive" concepts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.