Computer Science > Machine Learning
[Submitted on 24 Sep 2024]
Title:Predicting Deterioration in Mild Cognitive Impairment with Survival Transformers, Extreme Gradient Boosting and Cox Proportional Hazard Modelling
View PDF HTML (experimental)Abstract:The paper proposes a novel approach of survival transformers and extreme gradient boosting models in predicting cognitive deterioration in individuals with mild cognitive impairment (MCI) using metabolomics data in the ADNI cohort. By leveraging advanced machine learning and transformer-based techniques applied in survival analysis, the proposed approach highlights the potential of these techniques for more accurate early detection and intervention in Alzheimer's dementia disease. This research also underscores the importance of non-invasive biomarkers and innovative modelling tools in enhancing the accuracy of dementia risk assessments, offering new avenues for clinical practice and patient care. A comprehensive Monte Carlo simulation procedure consisting of 100 repetitions of a nested cross-validation in which models were trained and evaluated, indicates that the survival machine learning models based on Transformer and XGBoost achieved the highest mean C-index performances, namely 0.85 and 0.8, respectively, and that they are superior to the conventional survival analysis Cox Proportional Hazards model which achieved a mean C-Index of 0.77. Moreover, based on the standard deviations of the C-Index performances obtained in the Monte Carlo simulation, we established that both survival machine learning models above are more stable than the conventional statistical model.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.