Computer Science > Computer Vision and Pattern Recognition
[Submitted on 18 Sep 2024]
Title:Optical Flow Matters: an Empirical Comparative Study on Fusing Monocular Extracted Modalities for Better Steering
View PDF HTML (experimental)Abstract:Autonomous vehicle navigation is a key challenge in artificial intelligence, requiring robust and accurate decision-making processes. This research introduces a new end-to-end method that exploits multimodal information from a single monocular camera to improve the steering predictions for self-driving cars. Unlike conventional models that require several sensors which can be costly and complex or rely exclusively on RGB images that may not be robust enough under different conditions, our model significantly improves vehicle steering prediction performance from a single visual sensor. By focusing on the fusion of RGB imagery with depth completion information or optical flow data, we propose a comprehensive framework that integrates these modalities through both early and hybrid fusion techniques.
We use three distinct neural network models to implement our approach: Convolution Neural Network - Neutral Circuit Policy (CNN-NCP) , Variational Auto Encoder - Long Short-Term Memory (VAE-LSTM) , and Neural Circuit Policy architecture VAE-NCP. By incorporating optical flow into the decision-making process, our method significantly advances autonomous navigation. Empirical results from our comparative study using Boston driving data show that our model, which integrates image and motion information, is robust and reliable. It outperforms state-of-the-art approaches that do not use optical flow, reducing the steering estimation error by 31%. This demonstrates the potential of optical flow data, combined with advanced neural network architectures (a CNN-based structure for fusing data and a Recurrence-based network for inferring a command from latent space), to enhance the performance of autonomous vehicles steering estimation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.