Computer Science > Machine Learning
[Submitted on 19 Aug 2024]
Title:Toward Large-scale Spiking Neural Networks: A Comprehensive Survey and Future Directions
View PDF HTML (experimental)Abstract:Deep learning has revolutionized artificial intelligence (AI), achieving remarkable progress in fields such as computer vision, speech recognition, and natural language processing. Moreover, the recent success of large language models (LLMs) has fueled a surge in research on large-scale neural networks. However, the escalating demand for computing resources and energy consumption has prompted the search for energy-efficient alternatives. Inspired by the human brain, spiking neural networks (SNNs) promise energy-efficient computation with event-driven spikes. To provide future directions toward building energy-efficient large SNN models, we present a survey of existing methods for developing deep spiking neural networks, with a focus on emerging Spiking Transformers. Our main contributions are as follows: (1) an overview of learning methods for deep spiking neural networks, categorized by ANN-to-SNN conversion and direct training with surrogate gradients; (2) an overview of network architectures for deep spiking neural networks, categorized by deep convolutional neural networks (DCNNs) and Transformer architecture; and (3) a comprehensive comparison of state-of-the-art deep SNNs with a focus on emerging Spiking Transformers. We then further discuss and outline future directions toward large-scale SNNs.
Submission history
From: Lab Of Brain Machine Intelligence [view email][v1] Mon, 19 Aug 2024 13:07:48 UTC (501 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.