Mathematics > Combinatorics
[Submitted on 27 Aug 2024]
Title:Colorful fractional Helly theorem via weak saturation
View PDF HTML (experimental)Abstract:Two celebrated extensions of the classical Helly's theorem are the fractional Helly theorem and the colorful Helly theorem. Bulavka, Goodarzi, and Tancer recently established the optimal bound for the unified generalization of the fractional and the colorful Helly theorems using a colored extension of the exterior algebra. In this paper, we combinatorially reduce both the fractional Helly theorem and its colorful version to a classical problem in extremal combinatorics known as {weak saturation}. No such results connecting the fractional Helly theorem and weak saturation are known in the long history of literature. These reductions, along with basic linear algebraic arguments for the reduced weak saturation problems, let us give new short proofs of the optimal bounds for both the fractional Helly theorem and its colorful version without using exterior algebra.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.