Computer Science > Machine Learning
[Submitted on 25 Aug 2024 (v1), last revised 26 Jan 2025 (this version, v2)]
Title:Revisiting DNN Training for Intermittently-Powered Energy-Harvesting Micro-Computers
View PDF HTML (experimental)Abstract:The deployment of Deep Neural Networks in energy-constrained environments, such as Energy Harvesting Wireless Sensor Networks, presents unique challenges, primarily due to the intermittent nature of power availability. To address these challenges, this study introduces and evaluates a novel training methodology tailored for DNNs operating within such contexts. In particular, we propose a dynamic dropout technique that adapts to both the architecture of the device and the variability in energy availability inherent in energy harvesting scenarios. Our proposed approach leverages a device model that incorporates specific parameters of the network architecture and the energy harvesting profile to optimize dropout rates dynamically during the training phase. By modulating the network's training process based on predicted energy availability, our method not only conserves energy but also ensures sustained learning and inference capabilities under power constraints. Our preliminary results demonstrate that this strategy provides 6 to 22 percent accuracy improvements compared to the state of the art with less than 5 percent additional compute. This paper details the development of the device model, describes the integration of energy profiles with intermittency aware dropout and quantization algorithms, and presents a comprehensive evaluation of the proposed approach using real-world energy harvesting data.
Submission history
From: Cyan Subhra Mishra [view email][v1] Sun, 25 Aug 2024 01:13:00 UTC (11,516 KB)
[v2] Sun, 26 Jan 2025 16:08:51 UTC (11,708 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.