Quantum Physics
[Submitted on 22 Jul 2024 (v1), last revised 26 Jul 2024 (this version, v2)]
Title:Quantum Circuits for the heat equation with physical boundary conditions via Schrodingerisation
View PDF HTML (experimental)Abstract:This paper explores the explicit design of quantum circuits for quantum simulation of partial differential equations (PDEs) with physical boundary conditions. These equations and/or their discretized forms usually do not evolve via unitary dynamics, thus are not suitable for quantum simulation. Boundary conditions (either time-dependent or independent) make the problem more difficult. To tackle this challenge, the Schrodingerisation method can be employed, which converts linear partial and ordinary differential equations with non-unitary dynamics into systems of Schrodinger-type equations, via the so-called warped phase transformation that maps the equation into one higher dimension. Despite advancements in Schrodingerisation techniques, the explicit implementation of quantum circuits for solving general PDEs, especially with physical boundary conditions, remains underdeveloped. We present two methods for handling the inhomogeneous terms arising from time-dependent physical boundary conditions. One approach utilizes Duhamel's principle to express the solution in integral form and employs linear combination of unitaries (LCU) for coherent state preparation. Another method applies an augmentation to transform the inhomogeneous problem into a homogeneous one. We then apply the quantum simulation technique from [CJL23] to transform the resulting non-autonomous system to an autonomous system in one higher dimension. We provide detailed implementations of these two methods and conduct a comprehensive complexity analysis in terms of queries to the time evolution input oracle.
Submission history
From: Yue Yu [view email][v1] Mon, 22 Jul 2024 03:52:14 UTC (277 KB)
[v2] Fri, 26 Jul 2024 06:12:24 UTC (277 KB)
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.