Mathematics > Analysis of PDEs
[Submitted on 19 Jul 2024]
Title:Discrete inverse problems with internal functionals
View PDF HTML (experimental)Abstract:We study the problem of finding the resistors in a resistor network from measurements of the power dissipated by the resistors under different loads. We give sufficient conditions for local uniqueness, i.e. conditions that guarantee that the linearization of this non-linear inverse problem admits a unique solution. Our method is inspired by a method to study local uniqueness of inverse problems with internal functionals in the continuum, where the inverse problem is reformulated as a redundant system of differential equations. We use our method to derive local uniqueness conditions for other discrete inverse problems with internal functionals including a discrete analogue of the inverse Schrödinger problem and problems where the resistors are replaced by impedances and dissipated power at the zero and a positive frequency are available. Moreover, we show that the dissipated power measurements can be obtained from measurements of thermal noise induced currents.
Submission history
From: Fernando Guevara Vasquez [view email][v1] Fri, 19 Jul 2024 00:15:39 UTC (194 KB)
Current browse context:
math.AP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.