Computer Science > Machine Learning
[Submitted on 16 Jul 2024 (v1), last revised 15 Nov 2024 (this version, v3)]
Title:Dynamic Dimension Wrapping (DDW) Algorithm: A Novel Approach for Efficient Cross-Dimensional Search in Dynamic Multidimensional Spaces
View PDFAbstract:To effectively search for the optimal motion template in dynamic multidimensional space, this paper proposes a novel optimization algorithm, Dynamic Dimension Wrapping (DDW).The algorithm combines Dynamic Time Warping (DTW) and Euclidean distance, and designs a fitness function that adapts to dynamic multidimensional space by establishing a time-data chain mapping across dimensions. This paper also proposes a novel update mechanism,Optimal Dimension Collection (ODC), combined with the search strategy of traditional optimization algorithms, enables DDW to adjust both the dimension values and the number of dimensions of the population individuals simultaneously. In this way, DDW significantly reduces computational complexity and improves search accuracy. Experimental results show that DDW performs excellently in dynamic multidimensional space, outperforming 31 traditional optimization algorithms. This algorithm provides a novel approach to solving dynamic multidimensional optimization problems and demonstrates broad application potential in fields such as motion data analysis.
Submission history
From: Dongnan Jin [view email][v1] Tue, 16 Jul 2024 11:41:35 UTC (1,680 KB)
[v2] Thu, 18 Jul 2024 08:41:40 UTC (1,717 KB)
[v3] Fri, 15 Nov 2024 11:01:19 UTC (1,548 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.