Quantum Physics
[Submitted on 16 Jul 2024]
Title:Cloud-based Semi-Quantum Money
View PDF HTML (experimental)Abstract:In the 1970s, Wiesner introduced the concept of quantum money, where quantum states generated according to specific rules function as currency. These states circulate among users with quantum resources through quantum channels or face-to-face interactions. Quantum mechanics grants quantum money physical-level unforgeability but also makes minting, storing, and circulating it significantly challenging. Currently, quantum computers capable of minting and preserving quantum money have not yet emerged, and existing quantum channels are not stable enough to support the efficient transmission of quantum states for quantum money, limiting its practicality. Semi-quantum money schemes support fully classical transactions and complete classical banks, reducing dependence on quantum resources and enhancing feasibility. To further minimize the system's reliance on quantum resources, we propose a cloud-based semi-quantum money (CSQM) scheme. This scheme relies only on semi-honest third-party quantum clouds, while the rest of the system remains entirely classical. We also discuss estimating the computational power required by the quantum cloud for the scheme and conduct a security analysis.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.