Computer Science > Computation and Language
[Submitted on 11 Jul 2024]
Title:Fault Diagnosis in Power Grids with Large Language Model
View PDF HTML (experimental)Abstract:Power grid fault diagnosis is a critical task for ensuring the reliability and stability of electrical infrastructure. Traditional diagnostic systems often struggle with the complexity and variability of power grid data. This paper proposes a novel approach that leverages Large Language Models (LLMs), specifically ChatGPT and GPT-4, combined with advanced prompt engineering to enhance fault diagnosis accuracy and explainability. We designed comprehensive, context-aware prompts to guide the LLMs in interpreting complex data and providing detailed, actionable insights. Our method was evaluated against baseline techniques, including standard prompting, Chain-of-Thought (CoT), and Tree-of-Thought (ToT) methods, using a newly constructed dataset comprising real-time sensor data, historical fault records, and component descriptions. Experimental results demonstrate significant improvements in diagnostic accuracy, explainability quality, response coherence, and contextual understanding, underscoring the effectiveness of our approach. These findings suggest that prompt-engineered LLMs offer a promising solution for robust and reliable power grid fault diagnosis.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.