Computer Science > Robotics
[Submitted on 9 Jul 2024]
Title:Robust Meta-Learning of Vehicle Yaw Rate Dynamics via Conditional Neural Processes
View PDFAbstract:Trajectory planners of autonomous vehicles usually rely on physical models to predict the vehicle behavior. However, despite their suitability, physical models have some shortcomings. On the one hand, simple models suffer from larger model errors and more restrictive assumptions. On the other hand, complex models are computationally more demanding and depend on environmental and operational parameters. In each case, the drawbacks can be associated to a certain degree to the physical modeling of the yaw rate dynamics. Therefore, this paper investigates the yaw rate prediction based on conditional neural processes (CNP), a data-driven meta-learning approach, to simultaneously achieve low errors, adequate complexity and robustness to varying parameters. Thus, physical models can be enhanced in a targeted manner to provide accurate and computationally efficient predictions to enable safe planning in autonomous vehicles. High fidelity simulations for a variety of driving scenarios and different types of cars show that CNP makes it possible to employ and transfer knowledge about the yaw rate based on current driving dynamics in a human-like manner, yielding robustness against changing environmental and operational conditions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.