Computer Science > Machine Learning
[Submitted on 14 Jun 2024 (v1), last revised 1 Oct 2024 (this version, v2)]
Title:LUMA: A Benchmark Dataset for Learning from Uncertain and Multimodal Data
View PDF HTML (experimental)Abstract:Multimodal Deep Learning enhances decision-making by integrating diverse information sources, such as texts, images, audio, and videos. To develop trustworthy multimodal approaches, it is essential to understand how uncertainty impacts these models. We propose LUMA, a unique benchmark dataset, featuring audio, image, and textual data from 50 classes, for learning from uncertain and multimodal data. It extends the well-known CIFAR 10/100 dataset with audio samples extracted from three audio corpora, and text data generated using the Gemma-7B Large Language Model (LLM). The LUMA dataset enables the controlled injection of varying types and degrees of uncertainty to achieve and tailor specific experiments and benchmarking initiatives. LUMA is also available as a Python package including the functions for generating multiple variants of the dataset with controlling the diversity of the data, the amount of noise for each modality, and adding out-of-distribution samples. A baseline pre-trained model is also provided alongside three uncertainty quantification methods: Monte-Carlo Dropout, Deep Ensemble, and Reliable Conflictive Multi-View Learning. This comprehensive dataset and its benchmarking tools are intended to promote and support the development, evaluation, and benchmarking of trustworthy and robust multimodal deep learning approaches. We anticipate that the LUMA dataset will help the ICLR community to design more trustworthy and robust machine learning approaches for safety critical applications.
Submission history
From: Grigor Bezirganyan [view email][v1] Fri, 14 Jun 2024 09:22:07 UTC (5,340 KB)
[v2] Tue, 1 Oct 2024 13:07:02 UTC (5,568 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.