Electrical Engineering and Systems Science > Signal Processing
[Submitted on 8 Jun 2024]
Title:Near-Field Channel Estimation for Extremely Large-Scale Terahertz Communications
View PDF HTML (experimental)Abstract:Future Terahertz communications exhibit significant potential in accommodating ultra-high-rate services. Employing extremely large-scale array antennas is a key approach to realize this potential, as they can harness substantial beamforming gains to overcome the severe path loss and leverage the electromagnetic advantages in the near field. This paper proposes novel estimation methods designed to enhance efficiency in Terahertz widely-spaced multi-subarray (WSMS) systems. Initially, we introduce three sparse channel representation methods: polar-domain representation (PD-R), multi-angular-domain representation (MAD-R), and two-dimensional polar-angular-domain representation (2D-PAD-R). Each method is meticulously developed for near-field WSMS channels, capitalizing on their sparsity characteristics. Building on this, we propose four estimation frameworks using the sparse recovery theory: polar-domain estimation (PD-E), multi-angular-domain estimation (MAD-E), two-stage polar-angular-domain estimation (TS-PAD-E), and two-dimensional polar-angular-domain estimation (2D-PAD-E). Particularly, 2D-PAD-E, integrating a 2D dictionary process, and TS-PAD-E, with its sequential approach to angle and distance estimation, stand out as particularly effective for near-field angle-distance estimation, enabling decoupled calculation of these parameters. Overall, these frameworks provide versatile and efficient solutions for WSMS channel estimation, balancing low complexity with high-performance outcomes. Additionally, they represent a fresh perspective on near-field signal processing.
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.