Computer Science > Cryptography and Security
[Submitted on 4 Jun 2024]
Title:Fast and Secure Decentralized Optimistic Rollups Using Setchain
View PDF HTML (experimental)Abstract:Modern blockchains face a scalability challenge due to the intrinsic throughput limitations of consensus protocols. Layer 2 optimistic rollups (L2) are a faster alternative that offer the same interface in terms of smart contract development and user interaction. Optimistic rollups perform most computations offchain and make light use of an underlying blockchain (L1) to guarantee correct behavior, implementing a cheaper blockchain on a blockchain solution. With optimistic rollups, a sequencer calculates offchain batches of L2 transactions and commits batches (compressed or hashed) to the L1 blockchain. The use of hashes requires a data service to translate hashes into their corresponding batches. Current L2 implementations consist of a centralized sequencer (central authority) and an optional data availability committee (DAC).
In this paper, we propose a decentralized L2 optimistic rollup based on Setchain, a decentralized Byzantine-tolerant implementation of sets. The main contribution is a fully decentralized "arranger" where arrangers are a formal definition combining sequencers and DACs. We prove our implementation correct and show empirical evidence that our solution scales. A final contribution is a system of incentives (payments) for servers that implement the sequencer and data availability committee protocols correctly, and a fraud-proof mechanism to detect violations of the protocol.
Current browse context:
cs.CR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.