High Energy Physics - Theory
[Submitted on 27 May 2024 (v1), last revised 29 Jul 2024 (this version, v2)]
Title:Unorientable topological gravity and orthogonal random matrix universality
View PDF HTML (experimental)Abstract:The duality of Jackiw-Teitelboim (JT) gravity and a double scaled matrix integral has led to studies of the canonical spectral form factor (SFF) in the so called $\tau-$scaled limit of large times, $t \to \infty$, and fixed temperature in order to demonstrate agreement with universal random matrix theory (RMT). Though this has been established for the unitary case, extensions to other symmetry classes requires the inclusion of unorientable manifolds in the sum over geometries, necessary to address time reversal invariance, and regularization of the corresponding prime geometrical objects, the Weil-Petersson (WP) volumes. We report here how universal signatures of quantum chaos, witnessed by the fidelity to the Gaussian orthogonal ensemble, emerge for the low-energy limit of unorientable JT gravity, i.e. the Airy model/topological gravity. To this end, we implement the loop equations for the corresponding dual (double-scaled) matrix model and find the generic form of the Airy WP volumes, supported by calculations using unorientable Kontsevich graphs. In an apparent violation of the gravity/chaos duality, the $\tau-$scaled SFF on the gravity side acquires both logarithmic and power law contributions in $t$, not manifestly present on the RMT side. We show the expressions can be made to agree by means of bootstrapping-like relations hidden in the asymptotic expansions of generalized hypergeometric functions. Thus, we are able to establish strong evidence of the quantum chaotic nature of unorientable topological gravity.
Submission history
From: Torsten Weber [view email][v1] Mon, 27 May 2024 13:57:01 UTC (1,500 KB)
[v2] Mon, 29 Jul 2024 11:56:11 UTC (853 KB)
Ancillary-file links:
Ancillary files (details):
Current browse context:
hep-th
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.