Computer Science > Information Retrieval
[Submitted on 23 May 2024]
Title:ASI++: Towards Distributionally Balanced End-to-End Generative Retrieval
View PDF HTML (experimental)Abstract:Generative retrieval, a promising new paradigm in information retrieval, employs a seq2seq model to encode document features into parameters and decode relevant document identifiers (IDs) based on search queries. Existing generative retrieval solutions typically rely on a preprocessing stage to pre-define document IDs, which can suffer from a semantic gap between these IDs and the retrieval task. However, end-to-end training for both ID assignments and retrieval tasks is challenging due to the long-tailed distribution characteristics of real-world data, resulting in inefficient and unbalanced ID space utilization. To address these issues, we propose ASI++, a novel fully end-to-end generative retrieval method that aims to simultaneously learn balanced ID assignments and improve retrieval performance. ASI++ builds on the fully end-to-end training framework of vanilla ASI and introduces several key innovations. First, a distributionally balanced criterion addresses the imbalance in ID assignments, promoting more efficient utilization of the ID space. Next, a representation bottleneck criterion enhances dense representations to alleviate bottlenecks in learning ID assignments. Finally, an information consistency criterion integrates these processes into a joint optimization framework grounded in information theory. We further explore various module structures for learning ID assignments, including neural quantization, differentiable product quantization, and residual quantization. Extensive experiments on both public and industrial datasets demonstrate the effectiveness of ASI++ in improving retrieval performance and achieving balanced ID assignments.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.