Computer Science > Computer Vision and Pattern Recognition
[Submitted on 1 May 2024]
Title:Visual and audio scene classification for detecting discrepancies in video: a baseline method and experimental protocol
View PDF HTML (experimental)Abstract:This paper presents a baseline approach and an experimental protocol for a specific content verification problem: detecting discrepancies between the audio and video modalities in multimedia content. We first design and optimize an audio-visual scene classifier, to compare with existing classification baselines that use both modalities. Then, by applying this classifier separately to the audio and the visual modality, we can detect scene-class inconsistencies between them. To facilitate further research and provide a common evaluation platform, we introduce an experimental protocol and a benchmark dataset simulating such inconsistencies. Our approach achieves state-of-the-art results in scene classification and promising outcomes in audio-visual discrepancies detection, highlighting its potential in content verification applications.
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.