Computer Science > Sound
[Submitted on 25 Apr 2024 (v1), last revised 7 May 2024 (this version, v2)]
Title:Leveraging tropical reef, bird and unrelated sounds for superior transfer learning in marine bioacoustics
View PDFAbstract:Machine learning has the potential to revolutionize passive acoustic monitoring (PAM) for ecological assessments. However, high annotation and compute costs limit the field's efficacy. Generalizable pretrained networks can overcome these costs, but high-quality pretraining requires vast annotated libraries, limiting its current applicability primarily to bird taxa. Here, we identify the optimum pretraining strategy for a data-deficient domain using coral reef bioacoustics. We assemble ReefSet, a large annotated library of reef sounds, though modest compared to bird libraries at 2% of the sample count. Through testing few-shot transfer learning performance, we observe that pretraining on bird audio provides notably superior generalizability compared to pretraining on ReefSet or unrelated audio alone. However, our key findings show that cross-domain mixing which leverages bird, reef and unrelated audio during pretraining maximizes reef generalizability. SurfPerch, our pretrained network, provides a strong foundation for automated analysis of marine PAM data with minimal annotation and compute costs.
Submission history
From: Ben Williams Mr [view email][v1] Thu, 25 Apr 2024 09:12:35 UTC (1,440 KB)
[v2] Tue, 7 May 2024 12:42:32 UTC (1,442 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.