Computer Science > Machine Learning
[Submitted on 23 Apr 2024]
Title:Delayed Bottlenecking: Alleviating Forgetting in Pre-trained Graph Neural Networks
View PDF HTML (experimental)Abstract:Pre-training GNNs to extract transferable knowledge and apply it to downstream tasks has become the de facto standard of graph representation learning. Recent works focused on designing self-supervised pre-training tasks to extract useful and universal transferable knowledge from large-scale unlabeled data. However, they have to face an inevitable question: traditional pre-training strategies that aim at extracting useful information about pre-training tasks, may not extract all useful information about the downstream task. In this paper, we reexamine the pre-training process within traditional pre-training and fine-tuning frameworks from the perspective of Information Bottleneck (IB) and confirm that the forgetting phenomenon in pre-training phase may cause detrimental effects on downstream tasks. Therefore, we propose a novel \underline{D}elayed \underline{B}ottlenecking \underline{P}re-training (DBP) framework which maintains as much as possible mutual information between latent representations and training data during pre-training phase by suppressing the compression operation and delays the compression operation to fine-tuning phase to make sure the compression can be guided with labeled fine-tuning data and downstream tasks. To achieve this, we design two information control objectives that can be directly optimized and further integrate them into the actual model design. Extensive experiments on both chemistry and biology domains demonstrate the effectiveness of DBP.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.