Computer Science > Social and Information Networks
[Submitted on 23 Apr 2024]
Title:Source Localization for Cross Network Information Diffusion
View PDF HTML (experimental)Abstract:Source localization aims to locate information diffusion sources only given the diffusion observation, which has attracted extensive attention in the past few years. Existing methods are mostly tailored for single networks and may not be generalized to handle more complex networks like cross-networks. Cross-network is defined as two interconnected networks, where one network's functionality depends on the other. Source localization on cross-networks entails locating diffusion sources on the source network by only giving the diffused observation in the target network. The task is challenging due to challenges including: 1) diffusion sources distribution modeling; 2) jointly considering both static and dynamic node features; and 3) heterogeneous diffusion patterns learning. In this work, we propose a novel method, namely CNSL, to handle the three primary challenges. Specifically, we propose to learn the distribution of diffusion sources through Bayesian inference and leverage disentangled encoders to separately learn static and dynamic node features. The learning objective is coupled with the cross-network information propagation estimation model to make the inference of diffusion sources considering the overall diffusion process. Additionally, we also provide two novel cross-network datasets collected by ourselves. Extensive experiments are conducted on both datasets to demonstrate the effectiveness of \textit{CNSL} in handling the source localization on cross-networks.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.